Key message More than 40 QTLs associated with 14 stress-related, quality and agro-morphological traits were identified. A catalogue of favourable SNP markers for MAS and a list of candidate genes are provided. Abstract Cassava (Manihot esculenta) is one of the most important starchy root crops in the tropics due to its adaptation to marginal environments. Genetic progress in this clonally propagated crop can be accelerated through the discovery of markers and candidate genes that could be used in cassava breeding programs. We carried out a genome-wide association study (GWAS) using a panel of 5130 clones developed at the International Institute of Tropical Agriculture—Nigeria. The population was genotyped at more than 100,000 SNP markers via genotyping-by-sequencing (GBS). Genomic regions underlying genetic variation for 14 traits classified broadly into four categories: biotic stress (cassava mosaic disease and cassava green mite severity); quality (dry matter content and carotenoid content) and plant agronomy (harvest index and plant type) were investigated. We also included several agro-morphological traits related to leaves, stems and roots with high heritability. In total, 41 significant associations were uncovered. While some of the identified loci matched with those previously reported, we present additional association signals for the traits. We provide a catalogue of favourable alleles at the most significant SNP for each trait-locus combination and candidate genes occurring within the GWAS hits. These resources provide a foundation for the development of markers that could be used in cassava breeding programs and candidate genes for functional validation.
Cassava (Manihot esculenta) is one of the most important starchy root crops in the tropics due to its adaptation to marginal environments. Genetic progress in this clonally propagated crop can be accelerated through the discovery of markers and candidate genes that could be used in cassava breeding programs. We carried out a genome-wide association study (GWAS) using a panel of 5,310 clones developed at the International Institute of Tropical Agriculture - Nigeria. The population was genotyped at more than 100,000 SNP markers via genotyping-by-sequencing (GBS). Genomic regions underlying genetic variation for 14 traits classified broadly into four categories: biotic stress (cassava mosaic disease and cassava green mite severity); quality (dry matter content and carotenoid content) and plant agronomy (harvest index and plant type). We also included several agro-morphological traits related to leaves, stems and roots with high heritability. In total, 41 significant associations were uncovered. While some of the identified loci matched with those previously reported, we present additional association signals for the traits. We provide a catalogue of favourable alleles at the most significant SNP for each trait-locus combination and candidate genes occurring within the GWAS hits. These resources provide a foundation for the development of markers that could be used in cassava breeding programs and candidate genes for functional validation.
Conversion of cassava (Manihot esculenta) roots to processed products such as gari and fufu before consumption is a common practice worldwide by cassava end-user for detoxification, prolonged shelf life or profitability. Fresh root and processed product yield are supposed to be equivalent for each genotype, however, that is not the case. Developing genotypes with high product conversion rate is an important breeding goal in cassava as it drives the adoption rates of new varieties. The objective of this study was to quantify the contribution of genetic and genotype-by-environment interaction (GEI) patterns on cassava root conversion rate to gari and fufu. Sixty-seven advanced breeding genotypes from the International Institute of Tropical Agriculture (IITA) were evaluated across eight environments in Nigeria. Root conversion rate means across trials ranges from 14.72 to 22.76% for gari% and 16.96–24.24% for fufu%. Heritability estimates range from 0.17 to 0.74 for trial bases and 0.71 overall environment for gari% and 0.03–0.65 for trial bases and 0.72 overall environment for fufu% which implies that genetic improvement can be made on these traits. Root conversion rate for both gari and fufu% showed a negative but insignificant correlation with fresh root yield and significant positive correlation to Dry Matter content. For all fitted models, environment and interaction had explained more of the phenotypic variation observed among genotypes for both product conversion rates showing the presence of a strong GEI. Wrickle ecovalence (Wi) stability analysis and Geometric Adaptability index (GAI) identified G40 (TMS14F1285P0006) as part of top 5 genotypes for gari% but no overlapping genotype was identified by both stability analysis for fufu%. This genotypic performance across environments suggests that it is possible to have genotype with dual-purpose for high gari and fufu conversion rate.
Variety advancement decisions for root quality and yield-related traits in cassava are complex due to the variable patterns of genotype-by-environment interactions (GEI). Therefore, studies focused on the dissection of the existing patterns of GEI using linear-bilinear models such as Finlay-Wilkinson (FW), additive main effect and multiplicative interaction (AMMI), and genotype and genotype-by-environment (GGE) interaction models are critical in defining the target population of environments (TPEs) for future testing, selection, and advancement. This study assessed 36 elite cassava clones in 11 locations over three cropping seasons in the cassava breeding program of IITA based in Nigeria to quantify the GEI effects for root quality and yield-related traits. Genetic correlation coefficients and heritability estimates among environments found mostly intermediate to high values indicating high correlations with the major TPE. There was a differential clonal ranking among the environments indicating the existence of GEI as also revealed by the likelihood ratio test (LRT), which further confirmed the statistical model with the heterogeneity of error variances across the environments fit better. For all fitted models, we found the main effects of environment, genotype, and interaction significant for all observed traits except for dry matter content whose GEI sensitivity was marginally significant as found using the FW model. We identified TMS14F1297P0019 and TMEB419 as two topmost stable clones with a sensitivity values of 0.63 and 0.66 respectively using the FW model. However, GGE and AMMI stability value in conjunction with genotype selection index revealed that IITA-TMS-IBA000070 and TMS14F1036P0007 were the top-ranking clones combining both stability and yield performance measures. The AMMI-2 model clustered the testing environments into 6 mega-environments based on winning genotypes for fresh root yield. Alternatively, we identified 3 clusters of testing environments based on genotypic BLUPs derived from the random GEI component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.