The lone pair-π interaction between H(2)O and C(6)F(6) was studied using matrix isolation infrared spectroscopy and quantum chemical calculations. Co-deposition of H(2)O with C(6)F(6) in a nitrogen matrix at 17 K followed by annealing to 30 K, results in the appearance of multiple new peaks in the infrared spectrum that are shifted from the H(2)O and C(6)F(6) parent absorptions. These peaks only appear when both the H(2)O and C(6)F(6) are present and have been assigned to distinct structures of a 1:1 H(2)O·C(6)F(6) complex. Similar experiments were performed with D(2)O and HDO and the corresponding infrared peaks for the structures of the D(2)O·C(6)F(6) and HDO·C(6)F(6) complexes have also been observed. Theoretical calculations were performed for the H(2)O·C(6)F(6) complex using the B3LYP, MP2, and CCSD(T) methods. Geometry optimizations at the B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVDZ levels of theory located three structural minima, all of which involve the lone pair-π interaction between the H(2)O and the C(6)F(6) ring, but with different relative orientations of the H(2)O and C(6)F(6) subunits. BSSE corrected interaction energies were estimated at the CCSD(T)/aug-cc-pVTZ level and found to be between -11.2 and -12.3 kJ/mol for the three H(2)O·C(6)F(6) structures. Vibrational frequencies for the each of the structures were calculated at the B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVDZ levels. The frequencies calculated with both methods support the assignments of the observed new peaks in the infrared spectra to the structures of the H(2)O·C(6)F(6) complex; however, the B3LYP calculated frequency shifts were found to be in better quantitative agreement with the experimentally observed frequency shifts.
Vacuum ultraviolet photolysis (121.6 nm) of silane in a nitrogen matrix at 12 K leads to the observation of several transient species, which have been characterized using Fourier transform infrared spectroscopy. Four transient species containing silicon and nitrogen have been observed (SiN2, Si(N2)2, HSiN2, and H2SiN2), and one transient species containing only silicon and hydrogen has been observed. The assignment of the infrared bands due to each of these species is accomplished by performing isotopic substitution experiments (SiD4, 15N2, and mixtures with SiH4 and 14N2), matrix annealing experiments, UV-visible photolysis experiments, by comparison with previous experimental matrix isolation frequencies, where available, and for HSiN2 and H2SiN2 by comparison to B3LYP/aug-cc-pVTZ-calculated vibrational frequencies. The observation and infrared assignment of the HSiN2 and H2SiN2 molecules in these experiments is significant in that HSiN2 has not been previously reported in the matrix isolation literature, and H2SiN2 has only been reported once previously by a different route of formation. The energetics of the overall formation pathways for the molecules observed in these experiments is discussed using B3LYP/aug-cc-pVTZ calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.