Background
Fetal alcohol spectrum disorders (FASD) result from fetal exposure to alcohol and are the leading cause of mental retardation in the United States. There is currently no effective treatment that targets the causes of these disorders. Thus, novel therapies are critically needed to limit the neurodevelopmental and neurodegenerative pathologies associated with FASD.
Methods
A neonatal mouse FASD model was used to examine the role of the neuroimmune system in ethanol-induced neuropathology. Neonatal C57BL/6 mice were treated with ethanol, with or without pioglitazone, on postnatal days 4 through 9 and tissue was harvested one day post-treatment. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR)-γ agonist that exhibits anti-inflammatory activity and is neuroprotective. We compared the effects of ethanol with or without pioglitazone on cytokine and chemokine expression and microglial morphology in the hippocampus, cerebellum, and cerebral cortex.
Results
In ethanol-treated animals compared to controls, cytokines IL-1β and TNF-α mRNA levels were increased significantly in the hippocampus, cerebellum, and cerebral cortex. Chemokine CCL2 mRNA was increased significantly in the hippocampus and cerebellum. Pioglitazone effectively blocked the ethanol-induced increase in the cytokines and chemokine in all tissues to the level expressed in handled-only and vehicle-treated control animals. Ethanol also produced a change in microglial morphology in all brain regions that was indicative of microglial activation, and pioglitazone blocked this ethanol-induced morphological change.
Conclusions
These studies indicate that ethanol activates microglia to a pro-inflammatory stage and also increases the expression of neuroinflammatory cytokines and chemokines in diverse regions of the developing brain. Further, the anti-inflammatory and neuroprotective PPAR-γ agonist pioglitazone blocked these effects. It is proposed that microglial activation and inflammatory molecules expressed as a result of ethanol treatment during brain development contribute to the sequelae associated with FASD. Thus, pioglitazone, and anti-inflammatory pharmaceuticals more broadly, have potential as novel therapeutics for FASD.
The expression of transforming growth factor (TGF beta 1) protein in human and porcine skin has been analyzed by immunohistochemistry with two polyclonal antibodies (anti-CC and anti-LC) following cutaneous injury. The anti-LC antibody binds intracellular TGF beta 1 constitutively expressed in the nonproliferating, differentiated suprabasal keratinocytes in the epidermis of normal human skin, while the anti-CC antibody does not react with the form of TGF beta 1 present in normal skin as previously shown. TGF beta 1 may play a role in wound healing as suggested by its effect on multiple cell types in vitro and its acceleration of wound repair in animals. We have evaluated the natural expression and localization of TGF beta 1 protein in situ during initiation, progression, and resolution of the wound healing response in two models of cutaneous injury: the human suction blister and the dermatome excision of partial thickness procine skin. Anti-CC reactive TGF beta 1 in the epidermis is rapidly induced within 5 minutes following injury and progresses outward from the site of injury. The induction reflects a structural or conformational change in TGF beta 1 protein and can be blocked by the protease inhibitor leupeptin or by EDTA, suggesting a change in TGF beta 1 activity. One day post-injury anti-CC reactive TGF beta 1 is present in all epidermal keratinocytes adjacent to the wound including the basal cells. This corresponds temporally to the transient block of the basal keratinocyte mitotic burst following epithelial injury. Three to 4 days post-injury anti-CC reactive TGF beta 1 is localized around the suprabasal keratinocytes, in blood vessels, and in the papillary dermis in cellular infiltrates. The exclusion of TGF beta 1 from the rapidly proliferating basal cells and its extracellular association with suprabasal keratinocytes may represent physiological compartmentation of TGF beta 1 activity. Anti-CC staining is strong in the leading edge of the migrating epithelial sheet. The constitutive anti-LC reactivity with suprabasal keratinocytes seen in normal epidermis is neither relocalized nor abolished adjacent to the injury, but anti-LC staining is absent in the keratinocytes migrating within the wound. As the wound healing response resolves and the skin returns to normal, anti-CC reactive TGF beta 1 disappears while constitutive anti-LC reactive TGF beta 1 persists. Thus, changes in the structure or conformation of TGF beta 1, its localization, and perhaps its activity vary in a spatial and temporal manner following cutaneous injury and correlate with physiological changes during wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.