With the evolution of modern warfare, there is a constant demand for enhanced soldier protection. The research efforts presented in this paper focus on improving the ballistic performance of composite combat helmets through the control of fiber orientations, reduction of seam density, and preservation of long fiber lengths. To accomplish these objectives, near-net-shape preforming is explored as an alternative method to the traditional cut and dart techniques used in the manufacture of combat helmets. An overview of current fabrication procedures is provided in addition to a discussion of the material selection and preform processing technique. Forming trials are conducted on Dyneema® HB80, a cross-ply thermoplastic lamina, using a laboratory deep-draw setup to explore the effects of processing parameters on the quality of the formed part. Undesirable wrinkling that manifests during deep-drawing of the material is found to be most effectively mitigated through the use of sufficient binder pressure. Furthermore, it is demonstrated that a loose ply stack up is more amenable to the production of high-quality preforms than a preconsolidated charge of material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.