Photoperiod is the major regulator of reproduction in temperate-zone mammals. Laboratory rats are generally considered to be nonphotoresponsive, but young male Fischer 344 (F344) rats have a uniquely robust response to short photoperiods of 8 h of light. Rats transferred at weaning from a photoperiod of 16 h to photoperiods of < 14 h of light slowed in both reproductive development and somatic growth rate. Those in photoperiods < 13 h of light underwent the strongest responses. The critical photoperiod of F344 rats can be defined as 13.5 h of light, but photoperiods of = 12.5 h are required to fully suppress reproduction and somatic growth. This demonstrates that the 12-h photoperiod that is standard in some laboratory colonies would have significant effects on reproductive maturation and growth rate of this common rat strain. Young F344 rats in decreasing photoperiods that mimic natural change experienced delayed reproductive development and decreased growth rate to a greater extent and for a longer duration than those transferred at birth to a short photoperiod. The effects of gradual changes in photoperiod persisted for at least 12 wk after weaning. This indicates that young male F344 rats possess responses to photoperiod that would result in functional photoperiodism in a wild mammal.
Many temperate-zone species use photoperiod as an environmental cue to regulate reproductive timing. Strains of laboratory rats differ in their responsiveness to photoperiod, with the Fischer 344 (F344) strain being the most responsive known. F344 rats and closely related strains that differ in photoresponsiveness may be useful models to study the mechanisms and genetic basis for photoresponsiveness. We tested two hypotheses: (i) that melatonin mediates photoresponsiveness in F344 rats, as is the case in all other mammals tested, and (ii) that the location, abundance, or affinity of melatonin receptors, as estimated by the amount and location of binding of the radioligand 2-[125I]-iodomelatonin (IMEL) in the brain, might cause variation in photoresponsiveness among rat strains. Melatonin injections 1 h before lights off in a stimulatory photoperiod (L14 : D10) induced reproductive inhibition and reduced weight gain in a manner similar to short days of L8 : D16, while injections of ethanolic saline vehicle did not. Interestingly, melatonin injections administered during an inhibitory photoperiod (L10 : D14) caused greater inhibition of both reproduction and weight gain than short photoperiod alone. Pinealectomized F344 rats implanted subcutaneously with melatonin in a silastic capsule did not differ in testis size or body weight from controls with blank implants. The brains and pars tuberalis of the pituitary from photoresponsive F344 rats and nonphotoresponsive Harlan Sprague-Dawley (HSD) rats were processed for autoradiography using IMEL. We found significantly higher specific IMEL binding in the anterior and posterior regions of the paraventricular nucleus of the thalamus (PVNt) and reuniens nucleus of the thalamus of F344 rats than in the same areas in HSD rats. There were no differences between strains in specific IMEL binding in the medial PVNt, anteroventral and anterodorsal nucleus of the thalamus, suprachiasmatic nucleus, or the pars tuberalis. These results indicate that melatonin mediates photoresponsiveness in F344 rats. In addition, they provide support for the hypothesis that F344 rats may be photoresponsive due to differences from other strains in the location, density, or affinity of melatonin receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.