In the context of a random process scene environment model, a method is presented for fusing data from multiple sensors into a simplified, ordered space for performing electronic vision tasks. The method is based on a new discriminating measure called the tie statistic that is introduced to quantify sensor/feature performance and to provide a mapping from sensor/feature measurement space to a simplified and ordered decision space. The mapping process uses the tie statistic to measure the closeness of an unknown sample probability density function (pdf) to a known pdf for a decision class. Theorems presented in this article relate the tie statistic to minimum probability of error decision making and to the well known Kolmogorov‐Smirnov distance. As examples of the sensor/feature fusion method, the tie mapping process is applied to the object location (cueing) and the texture recognition problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.