Monoclonal antibody Cat-301 recognizes a chondroitin sulfate proteoglycan (CSPG) expressed on the extracellular surface of cell bodies and proximal dendrites of specific subsets of neurons in many areas of the mammalian CNS, including the cat visual cortex. The Cat-301 CSPG is first detected at the close of the critical period in development, a period during which the pattern of neuronal activity determines the mature synaptic circuitry and neuronal phenotype. In the cat visual cortex, dark-rearing from birth prolongs the duration of the critical period and attenuates the expression of the Cat-301 antigen, implicating the Cat-301 CSPG in the cellular mechanisms that terminate the period of synaptic plasticity. Because the Cat-301 antigen is expressed on only a limited subset of neurons, we have further examined the molecular heterogeneity among neuronal cell-surface CSPGs and have asked (1) whether other neuronal subsets carry distinct CSPGs and (2) whether the activity-dependent expression of the Cat-301 CSPG is a property generalizable to related cell-surface CSPGs. Here, we report two new monoclonal antibodies, Cat-315 and Cat-316, which together with Cat-301 define a family of at least seven related yet distinct CSPGs. These three antibodies define nonidentical subsets of neurons in the cat visual cortex. The expression of normal levels of these CSPGs is reduced by darkrearing. Together, these data show that the family of cellsurface CSPGs is molecularly diverse, that different sets of neurons express distinct complements of cell-surface antigens, and that the regulation of CSPG expression by activity may be a general feature of neuronal cell-surface CSPGs.
Peptides and biologics provide unique opportunities to modulate intracellular targets not druggable by conventional small molecules. Most peptides and biologics are fused with cationic uptake moieties or formulated into nanoparticles to facilitate delivery, but these systems typically lack potency due to low uptake and/or entrapment and degradation in endolysosomal compartments. Because most delivery reagents comprise cationic lipids or polymers, there is a lack of reagents specifically optimized to deliver cationic cargo. Herein, we demonstrate the utility of the cytocompatible polymer poly(propylacrylic acid) (PPAA) to potentiate intracellular delivery of cationic biomacromolecules and nano-formulations. This approach demonstrates superior efficacy over all marketed peptide delivery reagents and enhances delivery of nucleic acids and gene editing ribonucleoproteins (RNPs) formulated with both commercially-available and our own custom-synthesized cationic polymer delivery reagents. These results demonstrate the broad potential of PPAA to serve as a platform reagent for the intracellular delivery of cationic cargo.
Monoclonal antibody Cat-315 recognizes a chondroitin sulfate proteoglycan (CSPG) expressed on the surface of subsets of neurons in many areas of the mammalian CNS (). The cell type-specific expression exhibited by the Cat-315 CSPG and other perineuronal net CSPGs imparts a distinct molecular surface identity to a neuron (Celio and Blumcke, 1994; Lander et al., 1997). The cell type(s) producing these surface-associated proteins and yielding this cellular diversity has remained in question. The expression of the Cat-315 CSPG in primary rat cortical cultures has permitted an examination of the cellular source of the Cat-315 antigen, as well as a determination of its spatial relationship to the neuronal surface. Live-cell labeling of primary neuronal cultures demonstrates that the Cat-315 CSPG is on the extracellular surface of neurons. Furthermore, extraction experiments demonstrate that the Cat-315 CSPG lacks a transmembrane domain and that the entire molecule is extracellular and, therefore, can be considered a constituent of brain extracellular matrix. Several lines of evidence indicate that neurons with cell surface staining produce the Cat-315 CSPG. First, neurons with cell surface staining also show intracellular Cat-315 immunoreactivity. Second, beta-xyloside or monensin, reagents that inhibit the synthesis and transport of CSPGs, increase intracellular Cat-315 immunoreactivity within neurons that express cell surface Cat-315 immunoreactivity. Third, double labeling with Cat-315 and a polyclonal antibody for the Golgi complex demonstrates a precise colocalization of the intracellular Cat-315 immunoreactivity with the Golgi. Together, these observations demonstrate that neurons contribute to the extracellular matrix of brain and that the Cat-315 CSPG is produced by the neurons that carry Cat-315 cell surface immunoreactivity.
Mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK2, or MK2), a serine/threonine kinase downstream of p38 mitogen-activated protein kinase, has been implicated in inflammation and fibrosis. Compared with pathologically normal lung tissue, significantly higher concentrations of activated MK2 are evident in lung biopsies of patients with idiopathic pulmonary fibrosis (IPF). Expression is localized to fibroblasts and epithelial cells. In the murine bleomycin model of pulmonary fibrosis, we observed robust, activated MK2 expression on Day 7 (prefibrotic stage) and Day 14 (postfibrotic stage). To determine the effects of MK2 inhibition during the postinflammatory/prefibrotic and postfibrotic stages, C57BL/6 mice received intratracheal bleomycin instillation (0.025 U; Day 0), followed by PBS or the MK2 inhibitor (MK2i; 37.5 mg/kg), administered via either local (nebulized) or systemic (intraperitoneal) routes. MK2i or PBS was dosed daily for 14 days subsequent to bleomycin injury, beginning on either Day 7 or Day 14. Regardless of mode of administration or stage of intervention, MK2i significantly abrogated collagen deposition, myofibroblast differentiation and activated MK2 expression. MK2i also decreased circulating TNF-a and IL-6 concentrations, and modulated the local mRNA expression of profibrotic cytokine il-1b, matrix-related genes col1a2, col3a1, and lox, and transforming growth factor-b family members, including smad3, serpine1 (pai1), and smad6/7. In vitro, MK2i dosedependently attenuated total MK2, myofibroblast differentiation, the secretion of collagen Type I, fibronectin, and the activation of focal adhesion kinase, whereas activated MK2 was attenuated at optimal doses. The peptide-mediated inhibition of MK2 affects both inflammatory and fibrotic responses, and thus may offer a promising therapeutic target for IPF.Keywords: MK2; IPF; established fibrosis; transforming growth factor-b; SMAD Idiopathic pulmonary fibrosis (IPF) is a fatal scarring disease of the lung with no known etiology or definite treatment modality, and a survival rate of 3 to 5 years. Although the onset of IPF symptoms (breathlessness and cough) is usually insidious, significant fibrotic damage is already present at the time of diagnosis. IPF afflicts approximately 128,100 people in the United States, with 48,000 new cases occurring annually (1). Although lung transplantation is considered the definitive therapy for IPF, the 5-year survival after lung transplantation is only 50%. Accordingly, even lung transplantation cannot be considered a "cure" for IPF.Histopathologically, IPF can be described as an accumulation of activated myofibroblasts in fibroblastic foci (2). The impaired apoptosis of myofibroblasts may result in a persistent and dysregulated repair process that culminates in tissue fibrosis. Arguably, inflammation also plays a critical role in IPF, perhaps through the cyclic acute stimulation of fibroblasts in response to epithelial injury. Therefore, effective lung-tissue repair and matrix remodeling subse...
The cell-permeant peptide inhibitor of MAPKAP kinase 2 (MK2), MMI-0100, inhibits MK2 and downstream fibrosis and inflammation. Recent studies have demonstrated that MMI-0100 reduces intimal hyperplasia in a mouse vein graft model, pulmonary fibrosis in a murine bleomycin-induced model and development of adhesions in conjunction with abdominal surgery. MK2 is critical to the pathogenesis of ischemic heart injury as MK2 −/− mice are resistant to ischemic remodeling. Therefore, we tested the hypothesis that inhibiting MK2 with MMI-0100 would protect the heart after acute myocardial infarction (AMI) in vivo. AMI was induced by placing a permanent LAD coronary ligation. When MMI-0100 peptide was given 30 minutes after permanent LAD coronary artery ligation, the resulting fibrosis was reduced/prevented ~50% at a 2 week time point, with a corresponding improvement in cardiac function and decrease in left ventricular dilation. In cultured cardiomyocytes and fibroblasts, MMI-0100 inhibited MK2 to reduce cardiomyocyte caspase 3/7 activity, while enhancing primary cardiac fibroblast caspase 3/7 activity, which may explain MMI-0100’s salvage of cardiac function and anti-fibrotic effects in vivo. These findings suggest that therapeutic inhibition of MK2 after acute MI, using rationally-designed cell-permeant peptides, inhibits cardiac fibrosis and maintains cardiac function by mechanisms that involve inhibiting cardiomyocyte apoptosis, while enhancing primary cardiac fibroblast cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.