Monoubiquitination serves as a regulatory signal in a variety of cellular processes. Monoubiquitin signals are transmitted by binding to a small but rapidly expanding class of ubiquitin binding motifs. Several of these motifs, including the CUE domain, also promote intramolecular monoubiquitination. The solution structure of a CUE domain of the yeast Cue2 protein in complex with ubiquitin reveals intermolecular interactions involving conserved hydrophobic surfaces, including the Leu8-Ile44-Val70 patch on ubiquitin. The contact surface extends beyond this patch and encompasses Lys48, a site of polyubiquitin chain formation. This suggests an occlusion mechanism for inhibiting polyubiquitin chain formation during monoubiquitin signaling. The CUE domain shares a similar overall architecture with the UBA domain, which also contains a conserved hydrophobic patch. Comparative modeling suggests that the UBA domain interacts analogously with ubiquitin. The structure of the CUE-ubiquitin complex may thus serve as a paradigm for ubiquitin recognition and signaling by ubiquitin binding proteins.
Background: Dialysis-related amyloidosis (DRA) is a devastating and costly condition that affects patients with end stage kidney disease. A key feature of DRA is the formation of amyloid fibrils, consisting primarily of β2-microglobulin. Except for kidney transplantation, conventional kidney replacement therapies, which are based on nonspecific mechanisms, do not adequately address β2-microglobulin removal. An antihuman β2-microglobulin single-chain variable region antibody fragment (scFv) was developed to confer specificity to β2-microglobulin removal during hemodialysis. Methods: The scFv was immobilized onto agarose and characterized for β2m binding capacity, thermal stability at 37°C, regeneration capacity, storage conditions, and sterility. Results: The β2-microglobulin binding capacity was 1.3 mg/ml scFv gel. The immunoadsorbent is thermally stable, can be regenerated, stored short-term in 20% ethanol, lyophilized for long-term storage, and withstand process conditions similar to that of a patient’s hemodialysis therapy. Conclusions: The results support further investigation of immobilized scFvs as a novel tool to remove β2-microglobulin from blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.