Knowledge of the genetic structure and diversity of natural populations is important in developing strategies for in situ and ex situ conservation. We used eight microsatellite loci to estimate genetic structure and investigate within and between population genetic variation in eleven Brazilian wild rice (Oryza glumaepatula) populations. The study showed the following genetic diversity parameters: average number of 3.1 alleles per locus; 77.3% polymorphic loci; 0.091 observed heterozygosity and 0.393 gene diversity. F-statistics detected by microsatellite loci were: F ST = 0.491 (and R ST = 0.608), F IS = 0.780 and F IT = 0.888. No population was in Hardy-Weinberg equilibrium. The estimated apparent outcrossing rate (t a = 0.143) indicated a predominance of self-fertilization. The gene flow values were low (Nm = 0.259 and 0.161 for F ST and R ST , respectively). Populations were spatially structured but without a correlation between genetic and geographic distances. Five populations (PG-4, PG-2, PU-1, SO-4, NE-18) were identified as priorities for conservation strategies. Populations from the Amazon biome showed heterogeneity with respect to intrapopulation diversity (H e ). The high level of genetic differentiation between populations and the high number of private alleles suggested that sampling should be carried out on a large number of O. glumaepatula populations for ex situ conservation purposes.
The results indicated divergence in the mating system among O. glumaepatula populations, with consequences for conservation practices. The mating system of this species was classified as mixed with a predominance of self-fertilization.
BackgroundAdventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development.ResultsParental individuals and progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway.ConclusionsThis study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of the Trp pathway flux appears to be directed to the synthesis of indole glucosinolates (IG), as suggested by the over-expression of SUR2. Individuals that are efficient in AR formation may utilize alternative (non-Trp) pathways to synthesize IAA, based on the observation that they down-regulate the expression of TSA1, one of the critical steps in the synthesis of tryptophan.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0753-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.