Antimicrobial peptides (AMPs) are natural antibiotics produced by various organisms such as mammals, arthropods, plants, and bacteria. In addition to antimicrobial activity, AMPs can induce chemokine production, accelerate angiogenesis, and wound healing and modulate apoptosis in multicellular organisms. Originally, their antimicrobial mechanism of action was thought to consist solely of an increase in pathogen cell membrane permeability, but it has already been shown that several AMPs do not modulate membrane permeability in the minimal lethal concentration. Instead, they exert their effects by inhibiting processes such as protein and cell wall synthesis, as well as enzyme activity, among others. Although resistance to these molecules is uncommon several pathogens developed different strategies to overcome AMPs killing such as surface modification, expression of efflux pumps, and secretion of proteases among others. This review describes the various mechanisms of action of AMPs and how pathogens evolve resistance to them.
Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, a disease that affects 10 million individuals in Latin America. This report depicts the results of the analysis of 6,022 assembled groups from mycelium and yeast phase expressed sequence tags, covering about 80% of the estimated genome of this dimorphic, thermo-regulated fungus. The data provide a comprehensive view of the fungal metabolism, including overexpressed transcripts, stage-specific genes, and also those that are up-or down-regulated as assessed by in silico electronic subtraction and cDNA microarrays. Also, a significant differential expression pattern in mycelium and yeast cells was detected, which was confirmed by Northern blot analysis, providing insights into differential metabolic adaptations. The overall transcriptome analysis provided information about sequences related to the cell cycle, stress response, drug resistance, and signal transduction pathways of the pathogen. Novel P. brasiliensis genes have been identified, probably corresponding to proteins that should be addressed as virulence factor candidates and potential new drug targets.
In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.
BackgroundFarnesol is a sesquiterpene alcohol produced by many organisms, and also found in several essential oils. Its role as a quorum sensing molecule and as a virulence factor of Candida albicans has been well described. Studies revealed that farnesol affect the growth of a number of bacteria and fungi, pointing to a potential role as an antimicrobial agent.MethodsGrowth assays of Paracoccidioides brasiliensis cells incubated in the presence of different concentrations of farnesol were performed by measuring the optical density of the cultures. The viability of fungal cells was determined by MTT assay and by counting the colony forming units, after each farnesol treatment. The effects of farnesol on P. brasiliensis dimorphism were also evaluated by optical microscopy. The ultrastructural morphology of farnesol-treated P. brasiliensis yeast cells was evaluated by transmission and scanning electron microscopy.ResultsIn this study, the effects of farnesol on Paracoccidioides brasiliensis growth and dimorphism were described. Concentrations of this isoprenoid ranging from 25 to 300 μM strongly inhibited P. brasiliensis growth. We have estimated that the MIC of farnesol for P. brasiliensis is 25 μM, while the MLC is around 30 μM. When employing levels which don't compromise cell viability (5 to 15 μM), it was shown that farnesol also affected the morphogenesis of this fungus. We observed about 60% of inhibition in hyphal development following P. brasiliensis yeast cells treatment with 15 μM of farnesol for 48 h. At these farnesol concentrations we also observed a significant hyphal shortening. Electron microscopy experiments showed that, despite of a remaining intact cell wall, P. brasiliensis cells treated with farnesol concentrations above 25 μM exhibited a fully cytoplasmic degeneration.ConclusionOur data indicate that farnesol acts as a potent antimicrobial agent against P. brasiliensis. The fungicide activity of farnesol against this pathogen is probably associated to cytoplasmic degeneration. In concentrations that do not affect fungal viability, farnesol retards the germ-tube formation of P. brasiliensis, suggesting that the morphogenesis of this fungal is controlled by environmental conditions.
Paracoccidioides brasiliensis is a pathogenic fungus that undergoes a temperaturedependent cell morphology change from mycelium (22 • C) to yeast (36 • C). It is assumed that this morphological transition correlates with the infection of the human host. Our goal was to identify genes expressed in the mycelium (M) and yeast (Y) forms by EST sequencing in order to generate a partial map of the fungus transcriptome. Individual EST sequences were clustered by the CAP3 program and annotated using Blastx similarity analysis and InterPro Scan. Three different databases, GenBank nr, COG (clusters of orthologous groups) and GO (gene ontology) were used for annotation. A total of 3938 (Y = 1654 and M = 2274) ESTs were sequenced and clustered into 597 contigs and 1563 singlets, making up a total of 2160 genes, which possibly represent one-quarter of the complete gene repertoire in P. brasiliensis. From this total, 1040 were successfully annotated and 894 could be classified in 18 functional COG categories as follows: cellular metabolism (44%); information storage and processing (25%); cellular processes -cell division, posttranslational modifications, among others (19%); and genes of unknown functions (12%). Computer analysis enabled us to identify some genes potentially involved in the dimorphic transition and drug resistance. Furthermore, computer subtraction analysis revealed several genes possibly expressed in stage-specific forms of P. brasiliensis. Further analysis of these genes may provide new insights into the pathology and differentiation of P. brasiliensis. All EST sequences have been deposited in GenBank under Accession Nos CA580326-CA584263.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.