Sporothrix schenckii, previously assumed to be the sole agent of human and animal sporotrichosis, is in fact a species complex. Recently recognized taxa include S. brasiliensis, S. globosa, S. mexicana, and S. luriei, in addition to S. schenckii sensu stricto. Over the last decades, large epidemics of sporotrichosis occurred in Brazil due to zoonotic transmission, and cats were pointed out as key susceptible hosts. In order to understand the eco-epidemiology of feline sporotrichosis and its role in human sporotrichosis a survey was conducted among symptomatic cats. Prevalence and phylogenetic relationships among feline Sporothrix species were investigated by reconstructing their phylogenetic origin using the calmodulin (CAL) and the translation elongation factor-1 alpha (EF1α) loci in strains originated from Rio de Janeiro (RJ, n = 15), Rio Grande do Sul (RS, n = 10), Paraná (PR, n = 4), São Paulo (SP, n = 3) and Minas Gerais (MG, n = 1). Our results showed that S. brasiliensis is highly prevalent among cats (96.9%) with sporotrichosis, while S. schenckii was identified only once. The genotype of Sporothrix from cats was found identical to S. brasiliensis from human sources confirming that the disease is transmitted by cats. Sporothrix brasiliensis presented low genetic diversity compared to its sister taxon S. schenckii. No evidence of recombination in S. brasiliensis was found by split decomposition or PHI-test analysis, suggesting that S. brasiliensis is a clonal species. Strains recovered in states SP, MG and PR share the genotype of the RJ outbreak, different from the RS clone. The occurrence of separate genotypes among strains indicated that the Brazilian S. brasiliensis epidemic has at least two distinct sources. We suggest that cats represent a major host and the main source of cat and human S. brasiliensis infections in Brazil.
Paracoccidioidomycosis (PCM) is a systemic disease endemic to most of Latin America, with greatest impact in rural areas. The taxonomic status of one of the best studied Paracoccidioides isolates (Pb01) as P. brasiliensis remains unresolved due to its genomic differences from the other three previously described phylogenetic species (S1, PS2 and PS3; Carrero et al., 2008. Fungal Genet. Biol. 45, 605). Using the genealogic concordance method of phylogenetic species recognition (GCPSR) via maximum parsimony and Bayesian analysis, we identified a clade of 17 genotypically similar isolates, including Pb01, which are distinct from the S1/PS2/P3 clade. Consistent with GCPSR, this "Pb01-like" group can be considered a new phylogenetic species, since it is strongly supported by all independent and concatenated genealogies. "Pb01-like" species exhibit great sequence and morphological divergence from the S1/PS2/PS3 species clade, and we estimate that these groups last shared a common ancestor approximately 32 million years ago. In addition, recombination analysis revealed independent events inside both main groups suggesting reproductive isolation. Consequently, we recommend the formal description of the "Pb01-like" cluster as the new species Paracoccidioides lutzii, a tribute to Adolpho Lutz, discoverer of P. brasiliensis in 1908.
The order Chaetothyriales (Pezizomycotina, Ascomycetes) harbours obligatorily melanised fungi and includes numerous etiologic agents of chromoblastomycosis, phaeohyphomycosis and other diseases of vertebrate hosts. Diseases range from mild cutaneous to fatal cerebral or disseminated infections and affect humans and cold-blooded animals globally. In addition, Chaetothyriales comprise species with aquatic, rock-inhabiting, ant-associated, and mycoparasitic life-styles, as well as species that tolerate toxic compounds, suggesting a high degree of versatile extremotolerance. To understand their biology and divergent niche occupation, we sequenced and annotated a set of 23 genomes of main the human opportunists within the Chaetothyriales as well as related environmental species. Our analyses included fungi with diverse life-styles, namely opportunistic pathogens and closely related saprobes, to identify genomic adaptations related to pathogenesis. Furthermore, ecological preferences of Chaetothyriales were analysed, in conjuncture with the order-level phylogeny based on conserved ribosomal genes. General characteristics, phylogenomic relationships, transposable elements, sex-related genes, protein family evolution, genes related to protein degradation (MEROPS), carbohydrate-active enzymes (CAZymes), melanin synthesis and secondary metabolism were investigated and compared between species. Genome assemblies varied from 25.81 Mb (Capronia coronata) to 43.03 Mb (Cladophialophora immunda). The bantiana-clade contained the highest number of predicted genes (12 817 on average) as well as larger genomes. We found a low content of mobile elements, with DNA transposons from Tc1/Mariner superfamily being the most abundant across analysed species. Additionally, we identified a reduction of carbohydrate degrading enzymes, specifically many of the Glycosyl Hydrolase (GH) class, while most of the Pectin Lyase (PL) genes were lost in etiological agents of chromoblastomycosis and phaeohyphomycosis. An expansion was found in protein degrading peptidase enzyme families S12 (serine-type D-Ala-D-Ala carboxypeptidases) and M38 (isoaspartyl dipeptidases). Based on genomic information, a wide range of abilities of melanin biosynthesis was revealed; genes related to metabolically distinct DHN, DOPA and pyomelanin pathways were identified. The MAT (MAting Type) locus and other sex-related genes were recognized in all 23 black fungi. Members of the asexual genera Fonsecaea and Cladophialophora appear to be heterothallic with a single copy of either MAT-1-1 or MAT-1-2 in each individual. All Capronia species are homothallic as both MAT1-1 and MAT1-2 genes were found in each single genome. The genomic synteny of the MAT-locus flanking genes (SLA2-APN2-COX13) is not conserved in black fungi as is commonly observed in Eurotiomycetes, indicating a unique genomic context for MAT in those species. The heterokaryon (het) genes expansion associated with the low selective pressure at the MAT-locus suggests that a parasexual cycle may play an important r...
Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, a disease that affects 10 million individuals in Latin America. This report depicts the results of the analysis of 6,022 assembled groups from mycelium and yeast phase expressed sequence tags, covering about 80% of the estimated genome of this dimorphic, thermo-regulated fungus. The data provide a comprehensive view of the fungal metabolism, including overexpressed transcripts, stage-specific genes, and also those that are up-or down-regulated as assessed by in silico electronic subtraction and cDNA microarrays. Also, a significant differential expression pattern in mycelium and yeast cells was detected, which was confirmed by Northern blot analysis, providing insights into differential metabolic adaptations. The overall transcriptome analysis provided information about sequences related to the cell cycle, stress response, drug resistance, and signal transduction pathways of the pathogen. Novel P. brasiliensis genes have been identified, probably corresponding to proteins that should be addressed as virulence factor candidates and potential new drug targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.