Züst et al., 2012). Depending on herbivore pressures, plant defenses may be either constitutive (i.e., fixed) or induced (i.e., activated in response to a stimulus), where these strategies
Plant-herbivore interactions account for much of the biodiversity observed in an ecosystem. Plants may alter defense expression dependent on the specific herbivore present. Many studies focus on the optimization of these defenses against a single herbivore, but in an ecological context, there may be a myriad of herbivores at any given time. We designed a study to examine defenses employed by swamp white oak (Quercus bicolor) against insects and large mammals. We established six deer exclosures with trees located inside and
Plant ecosystem structure is understood to be a result of complex multitrophic interactions. Most multitrophic studies focus on plant aboveground adaptations to aboveground herbivore pressures, neglecting belowground adaptations in response to aboveground damage. Differential investment in root structures may allow plants to compensate for tissue loss or damage due to herbivores. Furthermore, phylogeny may constrain a plant's ability to adapt belowground. We examined the belowground responses of 12 species of oak Quercus to varying locations and intensities of simulated herbivore damage. We first established that oak belowground traits responded to aboveground herbivory by measuring patterns of investment in coarse versus fine root structures and re-allocation of non-structural carbohydrates (NSC) to root storage. We then tested whether phylogeny could explain variations in investment patterns using phylogenetic independent contrasts. Plant adaptations to aboveground herbivory included allocating biomass and carbon reserves to root structures, depending on the location and intensity of herbivore damage. NSC re-allocation to root storage was observed when oak species experienced any type of damage, but damage to lateral tissues caused a greater re-allocation than apical damage or control treatments. We found that most belowground responses to aboveground herbivory are species-specific and may be adapted for environmental conditions or type of herbivory. Some responses to herbivore damage, such as changes in fine-root mass and root sugar concentrations, were phylogenetically constrained. Phylogenetic constraints generally occur when there is severe damage at the apical meristem. Plants may adapt to aboveground tissue loss due to varying herbivore pressures (i.e. varying location and intensity of damage) by differentially investing in root types and NSC re-allocation to root storage. Understanding linkages between and phylogenetic constraints of plant belowground responses to aboveground herbivory will improve our understanding of the ecological processes involved in multitrophic interactions.
Adult cicadas pierce woody stems with their mouthparts to feed on xylem, suggesting the presence of cuticular adaptations that could increase hardness and elastic modulus. We tested the following hypotheses: (a) the mouthpart cuticle includes inorganic elements, which augment the mechanical properties; (b) these elements are abundant in specific mouthpart structures and regions responsible for piercing wood; (c) there are correlations among elements, which could provide insights into patterns of element colocalization. We used scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to investigate mouthpart morphology and quantify the elemental composition of the cuticle among four cicada species, including periodical cicadas (Magicicada sp.). Nanoindentation was used to quantify hardness and elastic modulus of the mandibles. We found 12 inorganic elements, including colocalized manganese and zinc in the distal regions of the mandible, the structure most responsible for piercing through wood; nanoindentation determined that these regions were also significantly harder and had higher elastic modulus than other regions. Manganese and zinc abundance relates to increased hardness and stiffness as in the cuticle of other invertebrates; however, this is one of the first reports of cuticular metals among insects with piercing-sucking mouthparts (>100,000 described species). The present investigation provides insight into the feeding mechanism of cicadas, an important but understudied component of their life traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.