Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non-mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P. aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain-to-strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve a redundant function as a structural scaffold in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that up-regulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and functionally redundant roles for two distinct biofilm exopolysaccharides.
During the past decade, there has been a renewed interest in using P. aeruginosa as a model system for biofilm development and pathogenesis. Since the biofilm matrix represents a critical interface between the bacterium and the host or its environment, considerable effort has been expended to acquire a more complete understanding of the matrix composition. Here, we focus on recent developments regarding the roles of alginate, Psl, and Pel polysaccharides in the biofilm matrix.
e Pseudomonas aeruginosa strains recovered from chronic pulmonary infections in cystic fibrosis patients are frequently mucoid. Such strains express elevated levels of alginate but reduced levels of the aggregative polysaccharide Psl; however, the mechanistic basis for this regulation is not completely understood. Elevated pslA expression was observed in an amrZ null mutant and in strains expressing a DNA-binding-deficient AmrZ. AmrZ is a transcription factor that positively regulates twitching motility and alginate synthesis, two phenotypes involved in P. aeruginosa biofilm development. AmrZ bound directly to the pslA promoter in vitro, and molecular analyses indicate that AmrZ represses psl expression by binding to a site overlapping the promoter. Altered expression of amrZ in nonmucoid strains impacted biofilm structure and architecture, as structured microcolonies were observed with low AmrZ production and flat biofilms with amrZ overexpression. These biofilm phenotypes correlated with Psl levels, since we observed elevated Psl production in amrZ mutants and lower Psl production in amrZ-overexpressing strains. These observations support the hypothesis that AmrZ is a multifunctional regulator mediating transition of P. aeruginosa biofilm infections from colonizing to chronic biofilms through repression of the psl operon while activating the algD operon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.