Abstract. Angiosperm leaves manifest a remarkable diversity of shapes that range from developmental sequences within a shoot and within crown response to microenvironment to variation among species within and between communities and among orders or families. It is generally assumed that because photosynthetic leaves are critical to plant growth and survival, variation in their shape reflects natural selection operating on function. Several non-mutually exclusive theories have been proposed to explain leaf shape diversity. These include: thermoregulation of leaves especially in arid and hot environments, hydraulic constraints, patterns of leaf expansion in deciduous species, biomechanical constraints, adaptations to avoid herbivory, adaptations to optimise light interception and even that leaf shape variation is a response to selection on flower form. However, the relative importance, or likelihood, of each of these factors is unclear. Here we review the evolutionary context of leaf shape diversification, discuss the proximal mechanisms that generate the diversity in extant systems, and consider the evidence for each the above hypotheses in the context of the functional significance of leaf shape. The synthesis of these broad ranging areas helps to identify points of conceptual convergence for ongoing discussion and integrated directions for future research.
Wood density plays a key role in ecological strategies and life history variation in woody plants, but little is known about its anatomical basis in shrubs. We quantified the relationships between wood density, anatomy, and climate in 61 shrub species from eight field sites along latitudinal belts between 31° and 35° in North and South America. Measurements included cell dimensions, transverse areas of each xylem cell type and percentage contact between different cell types and vessels. Wood density was more significantly correlated with precipitation and aridity than with temperature. High wood density was achieved through reductions in cell size and increases in the proportion of wall relative to lumen. Wood density was independent of vessel traits, suggesting that this trait does not impose conduction limitations in shrubs. The proportion of fibers in direct contact with vessels decreased with and was independent of wood density, indicating that the number of fiber-vessel contacts does not explain the previously observed correlation between wood density and implosion resistance. Axial and radial parenchyma each had a significant but opposite association with wood density. Fiber size and wall thickness link wood density, life history, and ecological strategies by controlling the proportion of carbon invested per unit stem volume.
Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering rule. Hydraulic systems of shrubs sampled along two transcontinental aridity gradients changed with increasing aridity from highly integrated to independently redundant modular designs. Shrubs in humid environments tend to be hydraulically integrated, with single, round basal stems, whereas dryland shrubs typically have modular hydraulic systems and multiple, segmented basal stems. Modularity is achieved anatomically at the vessel-network scale or developmentally at the whole-plant scale through asymmetric secondary growth, which results in a semiclonal or clonal shrub growth form that appears to be ubiquitous in global deserts.plant hydraulic systems ͉ wood anatomy ͉ hydraulic redundancy ͉ xylem structure and function I n engineering terms, the hydraulic system of a plant is a negative-pressure flow system. This type of hydraulic system, whether natural or man-made, is prone to fail when air bubbles (emboli) are introduced, because under strong negative pressure a single embolism can lead to breakage of the water column unless the air bubble is isolated in a branch or pipe. Both drought and freezing can cause embolisms in plants (1).Drought-induced embolisms form under negative pressure, when air is pulled into a water-filled conduit from adjacent air-filled spaces or cells, a process known as ''air seeding.'' This common, even daily, event (2-4) can lead to complete failure of the hydraulic system if runaway embolism occurs (5). Two of the three attributes by which plants' negative-pressure flow systems can be protected against failure, resistance and reparability, have been subjects of active research during the last decade (2-4, 6-10). The third attribute, redundancy, has received much less attention as an important drought adaptation but is emerging as a focus of research (11)(12)(13)(14). Attributes of redundancy in hydraulic systems of vessel-bearing angiosperms include the numbers of vessels (14), the vessel network topology (12), the number and sizes of pits between adjacent vessels (13,15,16), and the division of whole plants into independent hydraulic units (17).A basic rule of reliability engineering states that the level of independent redundancy should increase with increasing risk of fatal system failure (18); hydraulic engineers routinely increase the safety of man-made pressure-flow systems by designing them to be redundant (19). Redundancy in hydraulic systems (Fig. 1) can vary from a high degree of inter-connectedness (i.e., integrated redundancy) to complete, independent compartmentation (i.e., modular redundancy). In a negative-pressure flow system, integrated redundancy allows alternate water transport pathways around blockage...
Phase change (the change from nonreproductive to reproductive status) and heteroblasty (ontogenetic changes in vegetative metamers) are two determinants of longitudinal asymmetry in plants. These concepts are critically important to understanding the regulation of plant development as well as morphological evolution and life-history variation. Since Goebel, the two have been conflated. This article questions how phase change and heteroblasty are delimited and explores some of the problems that arise in the explicit or implicit link between them, given that several lines of evidence indicate that they are distinct and independent facets of plant development. It is suggested that problems are perpetuated through use of the terms "juvenile" and "adult" to describe both phenomena.
The thermal response of gas exchange varies among plant species and with growth conditions. Plants from hot dry climates generally reach maximal photosynthetic rates at higher temperatures than species from temperate climates. Likewise, species in these environments are predicted to have small leaves with more-dissected shapes. We compared eight species of Pelargonium (Geraniaceae) selected as phylogenetically independent contrasts on leaf shape to determine whether: (1) the species showed plasticity in thermal response of gas exchange when grown under different water and temperature regimes, (2) there were differences among more- and less-dissected leafed species in trait means or plasticity, and (3) whether climatic variables were correlated with the responses. We found that a higher growth temperature led to higher optimal photosynthetic temperatures, at a cost to photosynthetic capacity. Optimal temperatures for photosynthesis were greater than the highest growth temperature regime. Stomatal conductance responded to growth water regime but not growth temperature, whereas transpiration increased and water use efficiency (WUE) decreased at the higher growth temperature. Strikingly, species with more-dissected leaves had higher rates of carbon gain and water loss for a given growth condition than those with less-dissected leaves. Species from lower latitudes and lower rainfall tended to have higher photosynthetic maxima and conductance, but leaf dissection did not correlate with climatic variables. Our results suggest that the combination of dissected leaves, higher photosynthetic rates, and relatively low WUE may have evolved as a strategy to optimize water delivery and carbon gain during short-lived periods of high soil moisture. Higher thermal optima, in conjunction with leaf dissection, may reflect selection pressure to protect photosynthetic machinery against excessive leaf temperatures when stomata close in response to water stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.