A Hermes-based transposable element transformation system incorporating an enhanced green fluorescent protein (EGFP) marker was used to produce two transgenic lines of Culex quinquefasciatus (Say). The transformation frequency was approximately 12% and transformation of Culex was shown to be dependent on the presence of Hermes transposase. Injected Culex embryos were treated with four different heat shock regimes, two of which produced transformed individuals. These individuals were mated with wild-type mosquitoes and produced offspring which expressed the dominant EGFP gene in Mendelian ratios predicted for the stable integration of a gene at a single locus. The two transformed lines displayed distinct patterns of phenotypic expression, the expression of which has remained stable after fifteen generations. In these transgenic lines both the Hermes element and flanking plasmid DNA integrated into the Culex genome, as has been previously seen in Hermes-mediated transgenic strains of Aedes aegypti (L.). The high frequency of Culex transformation together with the dependence on the presence of Hermes transposase suggests that, as for Ae. aegypti, this mode of transposition into the germ-line genome occurs by an alternate mechanisms to the cut and paste type of transposition seen for this element in other insect species and in the somatic nuclei of mosquitoes. This is the first report of the genetic transformation of a species in the genus Culex and demonstrates that this medically important mosquito species can now, along with several other Culicine and Anopheline mosquito species, be genetically manipulated.
The development of efficient germ-line transformation technologies for mosquitoes has increased the ability of entomologists to find, isolate and analyze genes. The utility of the currently available systems will be determined by a number of factors including the behavior of the gene vectors during the initial integration event and their behavior after chromosomal integration. Post-integration behavior will determine whether the transposable elements being employed currently as primary gene vectors will be useful as gene-tagging and enhancertrapping agents. The post-integration behavior of existing insect vectors has not been extensively examined. Mos1 is useful as a primary germ-line transformation vector in insects but is inefficiently remobilized in Drosophila melanogaster and Aedes aegypti. Hermes transforms D. melanogaster efficiently and can be remobilized in this species. This element is also useful for creating transgenic A. aegypti, but its mode of integration in mosquitoes results in the insertion of flanking plasmid DNA. Hermes can be remobilized in the soma of A. aegypti and transposes using a common cut-and-paste mechanism; however, the element does not remobilize in the germ line. piggyBac can be used to create transgenic mosquitoes and occasionally integrates using a mechanism other than a simple cut-and-paste mechanism. Preliminary data suggest that remobilization is infrequent. Minos also functions in mosquitoes and, like the other gene vectors, appears to remobilize inefficiently following integration. These results have implications for future gene vector development efforts and applications.
Huanglongbing (HLB), also known as citrus greening, is one of the most destructive citrus diseases worldwide and is seen as a major threat to the multimillion dollar citrus industry in California. The vector of the two bacterial species associated with this disease, Candidatus Liberibacter asiaticus and Ca. L. americanus, is the Asian citrus psyllid (ACP), Diaphorina citri (4). ACP was detected in California in August of 2008 and has since been detected in nine counties in southern California. As part of a long term survey and testing program for the ACP carrying the HLB associated bacteria, groups of ACP nymphs and adults were submitted to the Jerry Dimitman Citrus Research Board/Citrus Pest and Disease Prevention Program Laboratory in Riverside, CA. In March 2012, DNA extracted using the Qiagen MagAttract 96 DNA plant kit (QIAGEN Inc., 27220 Turnberry Lane, Suite 200, Valencia, CA 91355) from a group of three ACP adults tested positive for Ca. L. asiaticus with the real-time PCR assay developed by Li et al. (4). ACP adults were collected from a residential citrus tree located in the Hacienda Heights area of Los Angeles County, California. The approximately 1.8 meter tall lemon tree had 23 graft unions, primarily of lemon (Citrus × meyeri) and pomelo (Citrus maxima) varieties. The tree was unthrifty, with yellow shoots and chlorotic leaves. Symptoms on the lemon and pomelo leaves included asymmetrical blotchy mottling, yellowing, and corking of the leaf veins, with the blotchy mottle more prominent in the pomelo leaves. Pomelo leaves appeared crinkled along the thickened veins. Lemon leaves had yellow veins and a few had islands of green tissue completely surrounded by yellow tissue. The entire tree was removed, cut into sections, bagged, and transported to the CDFA Plant Pest Diagnostics Lab for analysis. Two hundred milligrams of petiole and midrib tissue from leaves apical to each graft union was collected, and DNA from each sample was extracted using the Qiagen DNeasy plant mini kit. DNA extracted from both lemon and pomelo leaves tested positive for Ca. L. asiaticus using real-time PCR (4). A 1,160-bp fragment of the 16S ribosomal RNA gene was amplified from the insect and plant DNA extracts using conventional PCR with primers Ol1 and OI2c (2). A 703-bp fragment of the β-operon gene was amplified from the insect and plant extracts with primers A2 and J5 (1). The 16S rDNA fragments from the insect and plant respectively (GenBank Accession Nos. JX430434 and JX455745) and the β-operon fragments (JX430435 and JX455746) showed 100% identity with the corresponding regions of Ca. L. asiaticus (CP001677) strain psy 62. Our 16S rDNA sequence showed 98% identity with Ca. L. africanus (EU921620), 97% identity with Ca. L. solanacearum (HM246509), and 96% with Ca. L. americanus (FJ036892). In response to the detection of HLB, a 241 km2 quarantine area around the detection site was established. Surveys for ACP and symptomatic host plants within the HLB quarantine area are ongoing. To date, there have been no additional positive detections. In the United States, HLB was first detected in Florida in 2005 (4) and in Texas in January of 2012 (3). To our knowledge, this is the first confirmed report of Ca. L. asiaticus associated with HLB in California. References: (1) A. Hocquellet et al. Mol. Cell. Probes 13:373, 1999. (2) S. Jagoueix et al. Mol. Cell. Probes 10:43, 1996. (3) M. Kunta et al. Phytopathology 102:S4.66, 2012. (4) W. Li et al. J. Microbiol. Methods 66:104, 2006.
Squash genes (SLW1 and SLW3) induced systemically after silverleaf whitefly feeding were identified. Differences in the local and systemic expression of SLW1 and SLW3 after feeding by the closely related silverleaf and sweetpotato whiteflies were observed. Temporal and spatial studies showed that SLW1 and SLW3 were induced when second, third, and fourth nymphal instars were feeding. Although only barely detected after wounding and bacterial infection, SLW1 and SLW3 RNAs were abundant during water-deficit stress. Treatments with wound/defense signal molecules showed that SLW1 RNAs accumulated in response to methyl jasmonate and ethylene, whereas SLW3 was not regulated by known wound/defense signals, suggesting utilization of a novel mechanism for defense signal transduction. SLW1 RNAs accumulated during floral and fruit development, whereas SLW3 RNAs were not detected during vegetative or reproductive development. The potential roles of SLW1, an M20b peptidase-like protein, and SLW3, a beta-glucosidase-like protein, in defense and the leaf-silvering disorder are discussed.
Squash genes ( SLW1 and SLW3 ) induced systemically after silverleaf whitefly feeding were identified. Differences in the local and systemic expression of SLW1 and SLW3 after feeding by the closely related silverleaf and sweetpotato whiteflies were observed. Temporal and spatial studies showed that SLW1 and SLW3 were induced when second, third, and fourth nymphal instars were feeding. Although only barely detected after wounding and bacterial infection, SLW1 and SLW3 RNAs were abundant during water-deficit stress. Treatments with wound/defense signal molecules showed that SLW1 RNAs accumulated in response to methyl jasmonate and ethylene, whereas SLW3 was not regulated by known wound/defense signals, suggesting utilization of a novel mechanism for defense signal transduction. SLW1 RNAs accumulated during floral and fruit development, whereas SLW3 RNAs were not detected during vegetative or reproductive development. The potential roles of SLW1, an M20b peptidase-like protein, and SLW3, a  -glucosidase-like protein, in defense and the leaf-silvering disorder are discussed. INTRODUCTIONAlthough the signal transduction pathways that are activated by mechanical wounding and pathogen invasion have been studied intensively (Ryals et al., 1996;Ryan and Pearce, 1998; Dempsey et al., 1999;Pieterse and van Loon, 1999), there is limited understanding of changes in plant gene expression in response to insect feeding. Given the similarities of mechanical wounding and the damage incurred by insects that masticate foliage, it is not surprising that wound-response transcripts and proteins (i.e., proteinase inhibitors, polyphenol oxidases, and leucine aminopeptidase) accumulate locally and systemically in response to caterpillar feeding (Green and Ryan, 1982;Pautot et al., 1993;Stout et al., 1996; Karban and Baldwin, 1997). However, insect feeding and wounding are not equivalent. Feeding by Manduca sexta larvae, for example, enhances expression of wound-response genes relative to wounding but also induces expression of a novel set of plant genes that are not induced by wounding alone (Korth and Dixon, 1997). Although these herbivory-induced genes have not been identified, some of their gene products may be involved in biosynthesis or release of volatiles that are important in mediating plant-herbivore-predator interactions (Páre and Tumlinson, 1999).Far less is known about the changes in gene expression in response to insects that use other modes of feeding (Stout et al., 1994). Only a few recent studies have investigated plant responses to phloem-feeding whiteflies. Unlike insects that consume foliage, whiteflies do not induce the woundresponse genes that are modulated by the octadecanoid pathway. Whitefly feeding on tomatoes primarily induces the salicylic acid (SA)-independent, jasmonic acid (JA)/ethylene-dependent cascade of defense signal transduction (Chao et al., 1999;Pieterse and van Loon, 1999; D.P. Puthoff and L.L. Walling, manuscript submitted; D.P. Puthoff, C.S. LeVesque, T.M. Perring, and L.L. Walling, manuscript ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.