While social media offer great communication opportunities, they also increase the vulnerability of young people to threatening situations online. Recent studies report that cyberbullying constitutes a growing problem among youngsters. Successful prevention depends on the adequate detection of potentially harmful messages and the information overload on the Web requires intelligent systems to identify potential risks automatically. The focus of this paper is on automatic cyberbullying detection in social media text by modelling posts written by bullies, victims, and bystanders of online bullying. We describe the collection and fine-grained annotation of a cyberbullying corpus for English and Dutch and perform a series of binary classification experiments to determine the feasibility of automatic cyberbullying detection. We make use of linear support vector machines exploiting a rich feature set and investigate which information sources contribute the most for the task. Experiments on a hold-out test set reveal promising results for the detection of cyberbullying-related posts. After optimisation of the hyperparameters, the classifier yields an F1 score of 64% and 61% for English and Dutch respectively, and considerably outperforms baseline systems.
This paper presents the first shared task on irony detection: given a tweet, automatic natural language processing systems should determine whether the tweet is ironic (Task A) and which type of irony (if any) is expressed (Task B). The ironic tweets were collected using irony-related hashtags (i.e. #irony, #sar-casm, #not) and were subsequently manually annotated to minimise the amount of noise in the corpus. Prior to distributing the data, hashtags that were used to collect the tweets were removed from the corpus. For both tasks, a training corpus of 3,834 tweets was provided, as well as a test set containing 784 tweets. Our shared tasks received submissions from 43 teams for the binary classification Task A and from 31 teams for the multiclass Task B. The highest classification scores obtained for both subtasks are respectively F 1 = 0.71 and F 1 = 0.51 and demonstrate that fine-grained irony classification is much more challenging than binary irony detection.
The detection of online cyberbullying has seen an increase in societal importance, popularity in research, and available open data. Nevertheless, while computational power and affordability of resources continue to increase, the access restrictions on high-quality data limit the applicability of state-of-the-art techniques. Consequently, much of the recent research uses small, heterogeneous datasets, without a thorough evaluation of applicability. In this paper, we further illustrate these issues, as we (i) evaluate many publicly available resources for this task and demonstrate difficulties with data collection. These predominantly yield small datasets that fail to capture the required complex social dynamics and impede direct comparison of progress. We (ii) conduct an extensive set of experiments that indicate a general lack of cross-domain generalization of classifiers trained on these sources, and openly provide this framework to replicate and extend our evaluation criteria. Finally, we (iii) present an effective crowdsourcing method: simulating real-life bullying scenarios in a lab setting generates plausible data that can be effectively used to enrich real data. This largely circumvents the restrictions on data that can be collected, and increases classifier performance. We believe these contributions can aid in improving the empirical practices of future research in the field.
To push the state of the art in text mining applications, research in natural language processing has increasingly been investigating automatic irony detection, but manually annotated irony corpora are scarce. We present the construction of a manually annotated irony corpus based on a fine-grained annotation scheme that allows for identification of different types of irony. We conduct a series of binary classification experiments for automatic irony recognition using a support vector machine (SVM) that exploits a varied feature set and compare this method to a deep learning approach that is based on an LSTM network and (pre-trained) word embeddings. Evaluation on a held-out corpus shows that the SVM model outperforms the neural network approach and benefits from combining lexical, semantic and syntactic information sources. A qualitative analysis of the classification output reveals that the classifier performance may be further enhanced by integrating implicit sentiment information and context-and user-based features.
Although common sense and connotative knowledge come naturally to most people, computers still struggle to perform well on tasks for which such extratextual information is required. Automatic approaches to sentiment analysis and irony detection have revealed that the lack of such world knowledge undermines classification performance. In this article, we therefore address the challenge of modeling implicit or prototypical sentiment in the framework of automatic irony detection. Starting from manually annotated connoted situation phrases (e.g., “flight delays,” “sitting the whole day at the doctor’s office”), we defined the implicit sentiment held towards such situations automatically by using both a lexico-semantic knowledge base and a data-driven method. We further investigate how such implicit sentiment information affects irony detection by assessing a state-of-the-art irony classifier before and after it is informed with implicit sentiment information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.