SUMMARY We have used Drosophila ovarian Follicle Stem Cells (FSCs) to study how stem cells are regulated by external signals and draw three main conclusions. First, the spatial definition of supportive niche positions for FSCs depends on gradients of Hh and JAK-STAT pathway ligands, which emanate from opposite, distant sites. FSC position may be further refined by a preference for low-level Wnt signaling. Second, hyperactivity of supportive signaling pathways can compensate for the absence of the otherwise essential adhesion molecule, DE-cadherin, suggesting a close regulatory connection between niche adhesion and niche signals. Third, FSC behavior is determined largely by summing the inputs of multiple signaling pathways of unequal potencies. Altogether our findings indicate that a stem cell niche need not be defined by short-range signals and invariant cell contacts; rather, for FSCs, the intersection of gradients of long-range niche signals regulates the longevity, position, number and competitive behavior of stem cells.
Current brain spheroids or organoids derived from human induced pluripotent stem cells (hiPSCs) still lack a microglia component, the resident immune cells in the brain. The objective of this study is to engineer brain region-specific organoids from hiPSCs incorporated with isogenic microglia-like cells in order to enhance immune function. In this study, microglia-like cells were derived from hiPSCs using a simplified protocol with stage-wise growth factor induction, which expressed several phenotypic markers, including CD11b, IBA-1, CX3CR1, and P2RY12, and phagocytosed micron-size super-paramagnetic iron oxides. The derived cells were able to upregulate pro-inflammatory gene (TNF-α) and secrete anti-inflammatory cytokines (i.e., VEGF, TGF-β1, and PGE2) when stimulated with amyloid β42 oligomers, lipopolysaccharides, or dexamethasone. The derived isogenic dorsal cortical (higher expression of TBR1 and PAX6) and ventral (higher expression of NKX2.1 and PROX1) spheroids/organoids displayed action potentials and synaptic activities. Co-culturing the microglia-like cells (MG) with the dorsal (D) or ventral (V) organoids showed differential migration ability, intracellular Ca 2+ signaling, and the response to pro-inflammatory stimuli (V-MG group had higher TNF-α and TREM2 expression). Transcriptome analysis exhibited 37 microglia-related genes that were differentially expressed in MG and D-MG groups. In addition, the hybrid D-MG spheroids exhibited higher levels of immunoreceptor genes in activating members, but the MG group contained higher levels for most of genes in inhibitory members (except SIGLEC5 and CD200). This study should advance our understanding of the microglia function in brain-like tissue and establish a transformative approach to modulate cellular microenvironment toward the goal of treating various neurological disorders.
Alzheimer's disease is a progressive neurodegenerative disorder and the most common form of dementia. Like many neurological disorders, Alzheimer's disease has a sex‐biased epidemiological profile, affecting approximately twice as many women as men. The cause of this sex difference has yet to be elucidated. To identify molecular correlates of this sex bias, we investigated molecular pathology in females and males using the 5XFamilial Alzheimer's disease mutations (5XFAD) genetic mouse model of Alzheimer's disease. We profiled the transcriptome and proteome of the mouse hippocampus during early stages of disease development (1, 2, and 4 months of age). Our analysis reveals 42 genes that are differentially expressed between disease and wild‐type animals at 2 months of age, prior to observable plaque deposition. In 4‐month‐old animals, we detect 1,316 differentially expressed transcripts between transgenic and control 5XFAD mice, many of which are associated with immune function. Additionally, we find that some of these transcriptional perturbations are correlated with altered protein levels in 4‐month‐old transgenic animals. Importantly, our data indicate that female 5XFAD mouse exhibit more profound pathology than their male counterparts as measured by differences in gene expression. We also find that the 5XFAD transgenes are more highly expressed in female 5XFAD mice than their male counterparts, which could partially account for the sex‐biased molecular pathology observed in this dataset.
The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of “early-response genes” is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions.
BackgroundA variety of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, major depressive disorder, dyslexia and autism, are differentially prevalent between females and males. To better understand the possible molecular basis for the sex-biased nature of neurological disorders, we used a developmental series of female and male mice at 1, 2, and 4 months of age to assess both mRNA and protein in the hippocampus with RNA-sequencing and mass-spectrometry, respectively.ResultsThe transcriptomic analysis identifies 2699 genes that are differentially expressed between animals of different ages. The bulk of these differentially expressed genes are changed in both sexes at one or more ages, but a total of 198 transcripts are differentially expressed between females and males at one or more ages. The number of transcripts that are differentially expressed between females and males is greater in adult animals than in younger animals. Additionally, we identify 69 transcripts that show complex and sex-specific patterns of temporal regulation through postnatal development, 8 of which are heat-shock proteins. We also find a modest correlation between levels of mRNA and protein in the mouse hippocampus (Rho = 0.53).ConclusionThis study adds to the substantial body of evidence for transcriptomic regulation in the hippocampus during postnatal development. Additionally, this analysis reveals sex differences in the transcriptome of the developing mouse hippocampus, and further clarifies the need to include both female and male mice in longitudinal studies involving molecular changes in the hippocampus.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3608-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.