The perineuronal net forms the extracellular matrix of many neurons in the CNS, surrounding neuron cell bodies and proximal dendrites in a mesh-like structure with open "holes" at the sites of synaptic contacts. The perineuronal net is first detected late in development, approximately coincident with the transformation of the CNS from an environment conducive to neuronal growth and motility to one that is restrictive, suggesting a role for the perineuronal net in this developmental transition. Perineuronal nets show a great degree of molecular heterogeneity. Using monoclonal antibodies Cat-301, Cat-315, and Cat-316, we have shown previously that although all antibodies recognize chondroitin sulfate proteoglycans of similar sizes, each antibody recognizes perineuronal nets on distinct but overlapping sets of neurons in the adult cat CNS. An understanding of the heterogeneity demonstrated by these antibodies is critical to understanding the organization and function of perineuronal nets. Using aggrecan knock-out mice (cmd), we have now determined that all three antibodies recognize aggrecan. Chemical and enzymatic deglycosylation show that the differences revealed by the three antibodies arise from differential glycosylation of aggrecan. We further demonstrate that aggrecan mRNA is expressed relatively late in development and that neurons themselves are likely the predominant cellular sites of aggrecan expression. This work indicates that neurons can directly regulate the composition of their extracellular matrix by regulated synthesis and differential glycosylation of aggrecan in a cell type-specific manner. These results have important implications for the role of regulated microheterogeneity of glycosylation in the CNS.
Brain-enriched hyaluronan binding (BEHAB)/brevican is a brain-specific extracellular matrix protein containing a cleavage site between Glu 395 -Ser 396, which bears remarkable homology to the "aggrecanase" site in the cartilage proteoglycan aggrecan. Expression of BEHAB/brevican is dramatically increased in human gliomas, notoriously invasive tumors. Recently, we showed that the rat 9L gliosarcoma cell line, which does not express BEHAB/brevican and forms non-invasive tumors when grown as intracranial grafts, can form invasive tumors when transfected with a 5 cDNA fragment of BEHAB/brevican, but not when transfected with the full-length cDNA. In marked contrast, the highly invasive CNS-1 glioma cell line expresses and cleaves BE-HAB/brevican protein when grown as an intracranial graft. These results suggest that both synthesis and cleavage of BEHAB/brevican protein may play a role in the invasiveness of gliomas. We report here, using an antibody developed to the neoepitope created by BEHAB/brevican cleavage at the Glu 395 -Ser 396 site, that the CNS-1 cells are able to cleave the protein in vitro. We characterized the CNS-1-derived cleavage activity by assaying its ability to cleave BEHAB/brevican proteoglycan, and determined that the enzyme is a constitutively expressed, secreted activity. Using a variety of protease inhibitors, reverse transcriptase-polymerase chain reaction, and specific antibodies, we determined that this activity is likely to be a member of the ADAMTS family of metalloproteinases, specifically ADAMTS4. These results suggest a novel function for ADAMTS family members in BEHAB/brevican cleavage and glioma and indicate that inhibition of ADAMTS in glioma may provide a novel therapeutic strategy. BEHAB1 is a brain-specific, extracellular matrix protein (1), which was independently cloned in another laboratory and named brevican (2). BEHAB/brevican is the newest member of the lectican family of chondroitin sulfate proteoglycans, a family that also includes aggrecan, versican, and neurocan. Like all lecticans, the BEHAB/brevican protein contains a hyaluronanbinding domain in its N terminus and an epidermal growth factor-like repeat, a C-type lectin-like domain, and a complement regulatory protein-like domain in its C terminus (see Fig. 1A). A glycosylphosphatidylinositol-linked isoform of this gene has also been described (3, 4). BEHAB/brevican exists, somewhat unusually, both as a proteoglycan and as a non-glycosylated core protein (5). The BEHAB/brevican protein contains a single known cleavage site between Glu 395 -Ser 396 , which bears striking homology to the "aggrecanase" cleavage site in aggrecan (6), the major cartilage proteoglycan. The 23 amino acids surrounding the cleavage site in BEHAB/brevican are 50% identical to the cleavage site in aggrecan. In the normal adult rat brain, full-length BEHAB/brevican protein (145 kDa) and both 90-and 50-kDa cleavage products are detected (2, 7).The function of BEHAB/brevican in the brain is poorly understood, however, it is clear that its expressi...
A tetracycline-sensitive inducible expression system was used to regulate the expression of neurotransmitter receptor genes in two mammalian cell lines. The dopamine D3-receptor was stably expressed in GH3 cells, and GluR6 (a glutamate receptor subunit) was stably expressed in human embryonic kidney (HEK 293) cells. Three striking differences were found. 1) In the inactive state, virtually no D3-receptor expression was found in GH3 cells, whereas substantial levels of GluR6 expression were found in HEK 293 cells. 2) The induction of expression obtained upon removal of tetracycline was robust in GH3 cells but only modest in HEK 293 cells. 3) Whereas in each clonal cell line, the expression of a co-transfected hybrid transactivator is clearly regulated in a tetracycline-responsive manner, in the induced state, its mRNA levels were found to be very low in GH3 cells and very high in HEK 293 cells. The results indicate that, in contrast to GH3 cells, HEK 293 cells do not provide a cellular environment in which the expression of a heterologous gene can be tightly controlled in a tetracycline-responsive manner.
Malignant gliomas (primary brain tumors) aggressively invade the surrounding normal brain. This invasive ability is not demonstrated by brain metastases of nonglial cancers. The brain-specific, brain-enriched hyaluronan binding (BEHAB)/brevican gene, which encodes an extracellular hyaluronan-binding protein, is consistently expressed by human glioma and is not expressed by tumors of nonglial origin (Jaworski et al., 1996). BEHAB/brevican can be cleaved into an N-terminal fragment that contains a hyaluronan-binding domain (HABD) and a C-terminal fragment (Yamada et al., 1995). Here, using antisera to peptides in the predicted N-terminal and C-terminal proteolytic fragments, we demonstrate that the BEHAB/brevican protein is cleaved in invasive human and rodent gliomas. A role for this protein in glioma cell invasion was tested by transfecting a noninvasive cell line with the BEHAB/brevican gene. The noninvasive 9L glioma cell was transfected with either full-length BEHAB/brevican or the HABD and tested for invasion in in vitro and in vivo invasion assays. Although both constructs increased invasion in vitro, only the HABD increased invasion by tumors growing in vivo. Experimental intracranial tumors from full-length transfectants showed no increase in invasion over control tumors, whereas tumors from HABD transfectants showed a marked potentiation of tumor invasion, producing new tumor foci at sites distant from the main tumor mass. This work demonstrates a role for a brain-specific extracellular matrix protein in glioma invasion, opening new therapeutic avenues for a uniformly fatal disease.
There is a pressing need to identify new drug targets and novel approaches for treatment of non-small-cell lung carcinoma (NSCLC). Members of the epidermal growth factor receptor (EGFR) and Met receptor families have been identified as important molecular targets for NSCLC. Two EGFR tyrosine kinase inhibitors (TKIs; erlotinib and gefitinib) are in current clinical use, but a majority of patients do not respond to these targeted therapies. We used receptor TK (RTK) capture arrays to identify receptors active in NSCLC cell lines. As Met and ErbBs were active, we explored the potential therapeutic advantage of combined targeting of Met with ErbB receptor family inhibitors for treatment of NSCLC. We found that Met physically interacts with both EGFR and Her2 in a NSCLC cell line with overexpression/overactivation of Met. Combined use of a dual EGFR/Her2 inhibitor with a Met inhibitor yields maximal growth inhibition compared with the use of EGFR and/or Met inhibitors. This suggests that simultaneous inhibition of multiple RTKs may be needed to effectively abrogate tumour cell growth. Phosphoproteomic analysis by RTK capture arrays may be a valuable tool for identifying the subset of tumours with functional receptor activation, regardless of mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.