This paper presents an in-depth analysis of the application of different techniques for vehicle state and tyre force estimation using the same experimental data and vehicle models, except for the tyre models. Four schemes are demonstrated: (i) an Extended Kalman Filter (EKF) scheme using a linear tyre model with stochastically adapted cornering stiffness, (ii) an EKF scheme using a Neural Network (NN) datadriven linear tyre model, (iii) a tyre model-less Suboptimal-Second Order Sliding Mode (S-SOSM) scheme, and (iv) a Kinematic Model (KM) scheme integrated in an EKF. The estimation accuracy of each method is discussed. Moreover, guidelines for each method provide potential users with valuable insight into key properties and points of attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.