Nitrate content of surface waters results from complex mixing of multiple sources, whose signatures can be modified through N reactions occurring within the different compartments of the whole catchment. Despite this complexity, the determination of nitrate origin is the first and crucial step for water resource preservation. Here, for the first time, we combined at the catchment scale stable isotopic tracers (δ15N and δ18O of nitrate and δ11B) and fecal indicators to trace nitrate sources and pathways to the stream. We tested this approach on two rivers in an agricultural region of SW France. Boron isotopic ratios evidenced inflow from anthropogenic waters, microbiological markers revealed organic contaminations from both human and animal wastes. Nitrate δ15N and δ18O traced inputs from the surface leaching during high flow events and from the subsurface drainage in base flow regime. They also showed that denitrification occurred within the soils before reaching the rivers. Furthermore, this study highlighted the determinant role of the soil compartment in nitrate formation and recycling with important spatial heterogeneity and temporal variability.
Environmental context. Nitrate contamination of drinking water quality may be critical, particularly in rural areas where agricultural practices may release large amounts of nitrogen. Knowledge of the source of such contamination, mandatory for water supply management, can be successfully acquired by combining the natural stable isotopes of nitrate, boron isotopic ratios and microbiological indicators. Nitrate produced by anthropogenic activities is an important environmental issue, particularly in agricultural regions and especially when water is used as drinking water. Determination of the source of nitrate among the many potential sources is the first step towards water quality improvement.Recent studies have proven the efficiency of the coupled use of nitrate (N and O) and boron isotope ratios to identify the origin of nitrate in water. [1][2][3] Nitrate from mineral fertilisers is characterised by atmospheric values of d
The Seine River basin (France) is representative of the large urbanised catchments (78,650 km2) located in Northwestern Europe. As such, it is highly impacted by anthropogenic activities and their associated emissions of pollutants such as polycyclic aromatic hydrocarbons (PAHs). These compounds, originating from household heating and road traffic, are responsible for serious environmental issues across the basin. This study aims at establishing and using mass balance analyses of PAHs at the Seine River basin scale as an efficient tool for understanding PAH pathways in the environment. A dual-scale approach (urban vs. rural areas) was used successfully, and mass balances provided useful knowledge on the environmental fate of PAHs. In urban areas, runoff and domestic and industrial discharges contributed similarly to the PAH supply to the sewer system. During the wastewater treatment process, PAHs were mainly eliminated through sludge removal. At the basin scale, substantial amounts of PAHs were quantified in soils, and the limited annual inputs and outputs through atmospheric deposition and soil erosion, respectively, suggest that these compounds have long residence times within the basin. While wastewater and runoff discharges from urban areas account for a substantial part of PAH urban fluxes to the Seine River, soil erosion seems to be the predominant contributor at the basin scale. Overall, the PAH flux at the basin outlet was greater than supplies, suggesting that the Seine River system may currently be undergoing a decontamination phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.