Cereal Chem. 94(4):723-732Blending wheat or flour to meet end-use requirements is a critical part of the production process to deliver consistent quality products. The functionality of commercial Canadian hard red wheat flour (HWF) and soft red wheat flour (SWF) blends with ratios of 100:0, 75:25, 50:50, 25: 75, and 0:100 (HWF/SWF, w/w) was investigated with new and standard methods to discern which functional properties may be indicators of bread quality and processing performance. Rheological characteristics including farinograph water absorption behavior, dough development time (DT), stability, extensigraph extensibility, and gluten aggregation of wheat flours were significantly influenced by the proportion of HWF in blends of SWF and HWF (P < 0.05). The SWF content in the blends had negative linear relationships with the protein content, lactic acid solvent retention capacity, water absorption, and GlutoPeak peak torque. Polynomial relationships were observed for sodium dodecyl sulfate sedimentation volume, DT, stability, extensibility, resistance, GlutoPeak peak time, and bread loaf volume with the amount of SWF in blends. The results indicate that linear responses may be more closely tied to protein content, whereas polynomial responses may be more indicative of protein quality and baking performance. The GlutoPeak peak time was sensitive to the addition of HWF in the blends, showing a significant change in gluten aggregation kinetics between the 0 and 25% HWF samples. Principal component analysis (PCA) confirmed that GlutoPeak peak time was a significant factor in differentiating the 0% HWF. Protein secondary structures identified in the final baked bread were also PCA factors differentiating the 0% HWF sample. Although the 0% bread sample did not deviate from the observed polynomial trend for bread loaf volume, the differences in bread protein secondary structures may translate into differences in processing tolerance in commercial settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.