The long-standing quest for chiral hypervalent organoiodine compounds (i.e., iodanes) as metal-free reagents for asymmetric synthesis continues. Although remarkable progress has recently been made in organoiodine-catalyzed reactions using a terminal oxidant in stoichiometric amounts, there is still a significant need for "flaskable" chiral iodane reagents. Herein, we describe the synthesis of new iodobinaphthyls and iodobiphenyls, their successful and selective DMDO-mediated oxidation into either λ(3)- or λ(5)-iodanes, and the evaluation of their capacity to promote asymmetric hydroxylative phenol dearomatization (HPD) reactions. Most notably, a C2-symmetrical biphenylic λ(5)-iodane promoted the HPD-induced conversion of the monoterpene thymol into the corresponding ortho-quinol-based [4+2] cyclodimer (i.e., bis(thymol)) with enantiomeric excesses of up to 94%.
Many natural products of plant or microbial origins are derived from enzymatic dearomative oxygenation of 2‐alkylphenolic precursors into 6‐alkyl‐6‐hydroxycyclohexa‐2,4‐dienones. These so‐called ortho‐quinols cyclodimerize via a remarkably selective bispericyclic Diels–Alder reaction. Whether or not the intervention of catalytic or dirigent proteins is involved during this final step of the biosynthesis of these natural products, this cyclodimerization of ortho‐quinols can be chemically reproduced in the laboratory with the same strict level of site‐specific regioselectivity and stereoselectivity. This unique yet unified process, which finds its rationale in the inherent chemical reactivity of those ortho‐quinols, is illustrated herein by an efficient and bioinspired first chemical synthesis of one of the most structurally complex and synthetically challenging examples of such natural cyclodimers, the bisditerpenoid (+)‐maytenone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.