The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice conditions than under constant practice conditions. This finding is attributed to the education of attention to the more useful informational variables: Variability of practice reduces the usefulness of initially used informational variables, which leads to a quicker change in variable use, and hence to a larger improvement in performance. In the practice phase of Experiment 2 variability was selectively applied to some experimental factors but not to others. Participants tended to converge toward the variables that were useful in the specific conditions that they encountered during practice. This indicates that an explanation for variability of practice effects in terms of the education of attention is a useful alternative to traditional explanations based on the notion of the generalized motor program and to explanations based on the notions of noise and local minima.
This study was designed to better understand the process underlying the learning of goal-directed locomotion. Subjects walked on a treadmill in a virtual reality setting and were asked to cross pairs of oscillating doors. The subjects behaviour was examined at the beginning of the learning process (pretest), after 350 trials (intermediate test), and after 700 trials (posttest). The data were analysed at three different levels, each representing a specific aspect of the global response: performance outcome, displacement kinematics, and current arrival condition. While some aspects of performance outcome suggested the presence of a ceiling effect in the intermediate test, both displacement kinematics and current arrival condition clearly highlighted continuous transformations of the control mechanism involved. The learning process is best described as (1) the establishing of a relationship between specific information and a movement parameter and (2) the optimization of this relationship. The optimization process is characterized by the further exploration of the available behavioural repertoire and by the refinement of the dialogue between information and movement.
Knowledge concerning feedback schedules can be used for the design of optimal practice methods for student pilots, and knowledge about the informational variables used by expert performers has implications for the design of cockpits and runways that facilitate the detection of these variables.
The goal of this study was to identify the control mechanism used for locomotion pointing regulation under different external temporal constraints. Subjects ( n=8) had to walk on a treadmill through a number of virtual hallways and cross a pair of gliding doors that opened and closed at a constant preset frequency (0.5 Hz or 1 Hz). Crossing performance, step durations, and step lengths were used as dependent measures. The results revealed the regulation of locomotion occurred earlier and was more pronounced at 0.5 Hz than at 1 Hz, making performance better at 0.5 Hz. Nevertheless at the two frequencies the control mechanism appears similar; it is grounded on information movement coupling. This control mechanism allows for the production of specific behavior according to the task constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.