In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, B k , by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This optical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of B k published by the CODATA with a relative accuracy of 6 1 7 10 . − × . We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed ν2 saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of B k with an accuracy of a few ppm.
In this article, we describe an experiment performed at the Laboratoire de physique des lasers and dedicated to an optical measurement of the Boltzmann constant k B . With the proposed innovative technique, determining k B comes down to an ordinary frequency measurement. The method consists in measuring as accurately as possible the Doppler absorption profile of a rovibrational line of ammonia in thermal equilibrium. This profile is related to the Maxwell-Boltzmann molecular velocity distribution along the laser beam. A fit of the absorption line shape leads to a determination of the Doppler width proportional to √ k B T and thus to a determination of the Boltzmann constant. The laser source is an ultra-stable CO 2 laser with a wavelength λ ≈ 10 µm. The absorption cell is placed in a thermostat, keeping the temperature at 273.15 K within 1.4 mK. We were able to measure k B with a relative uncertainty as small as 3.8 × 10 −5 , which represents an improvement of an order of magnitude for an integration time comparable to our previous measurement published in 2007. To cite this article: K. Djerroud et al., C. R. Physique 10 (2009). RésuméMesure de la constante de Boltzmann utilisant l'élargissement Doppler avec une incertitude relative de 3,8 × 10 −5 . Dans cet article, nous présentons l'expérience développée au Laboratoire de physique des lasers pour la mesure optique de la constante de Boltzmann k B . Cette nouvelle approche ramène la détermination de k B à une mesure de fréquence. L'expérience consiste à mesurer le plus exactement possible le profil d'absorption Doppler d'une raie de vibration-rotation de l'ammoniac à l'équilibre thermodynamique. Ce profil reflète la distribution de Maxwell-Boltzmann des vitesses moléculaires le long du faisceau laser. Une analyse de la forme de la raie d'absorption conduit à une détermination de l'élargissement Doppler, proportionnel à √ k B T , et donc à une mesure de la constante de Boltzmann. La mesure spectroscopique est réalisée à l'aide d'un laser à CO 2 ultra-stable de longueur d'onde λ ≈ 10 µm. La cellule d'absorption est placée dans un thermostat qui permet de contrôler la température autour de 273,15 K avec une incertitude de 1,4 mK. Ces mesures nous ont conduit récemment à une détermination de k B avec une incertitude relative de 3,8 × 10 −5 . Cela représente, pour des temps de mesure comparables, un gain d'un ordre de grandeur par rapport à notre précédente mesure publiée en . Pour citer cet article : K. Djerroud et al., C. R. Physique 10 (2009).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.