The description of ground state charge-transfer complexes is highly challenging. Illustrative examples include large overestimations of charge-transfer by local and semilocal density functional approximations as well as inaccurate binding energies. It is demonstrated here that standard density functionals fail to accurately describe interaction energies of charge-transfer complexes not only because of the missing long-range exchange as generally assumed but also as a result of the neglect of weak interactions. Thus, accounting for the missing van der Waals interactions is of key importance. These assertions, based on the evaluation of the extent of stabilization due to dispersion using both DFT coupled with our recent density-dependent dispersion correction (dDsC) and high-level ab initio computations, reflect the imperfect error-cancellation between the overestimation of charge-transfer and the missing long-range interactions. An in-depth energy decomposition analysis of an illustrative series of four small ambidentate molecules (HCN, HNC, HF, and ClF) bound together with NF3 provides the main conclusions, which are validated on a prototypical organic charge-transfer complex (i.e., tetrathiafulvalene-tetracyanoquinodimethane, TTF-TCNQ). We establish that the interaction energies for charge-transfer complexes can only be properly described when using well-balanced functionals such as PBE0-dDsC, M06-2X, and LC-BOP-LRD.
Sweet cyclizations: The synthesis of pyrrolizidines and indolizidines has been achieved. Olefins were subjected to an intramolecular palladium‐catalyzed aminoalkynylation with the hypervalent iodine reagent TIPS‐EBX. After removal of the protecting group, a two‐step cyclization sequence and subsequent reduction led to the natural product (±)‐trachelanthamidine (see scheme; TIPS‐EBX=triisopropylsilyl ethynylbenziodoxolone).
A gram-scale enantioselective total synthesis of (+)-peganumine A was accomplished in 7 steps from commercially available 6-methoxytryptamine. Key steps included (a) a Liebeskind-Srogl cross-coupling; (b) a one-pot construction of the tetracyclic skeleton from an ω-isocyano-γ-oxo-aldehyde via a sequence of an unprecedented C-C bond forming lactamization and a transannular condensation; (c) a one-pot organocatalytic process merging two achiral building blocks into an octacyclic structure via a sequence of enantioselective Pictet-Spengler reaction followed by a transannular cyclization. This last reaction created two spirocycles and a 2,7-diazabicyclo[2.2.1]heptan-3-one unit with excellent control of both the absolute and relative stereochemistry of the two newly created quaternary stereocenters.
Reaction of 2-(trimethylsilyl)aryl triflates 1 with N-aryl-α-amino ketones 2 afforded N-aryl-2,3-disubstituted indoles in good to excellent yields with complete control of the substitution patterns. This methodology allowed for the first time a one-step synthesis of unsymmetrical 2,3-dialkyl substituted indoles in a regiospecific manner.
Treatment of 3-hydroxyoxindoles with trichloroacetonitrile (1.3 equiv.) and a catalytic amount of DBU (0.1 equiv.) followed by addition of nucleophiles (1.5 equiv.) and diphenylphosphoric acid (0.2 equiv.) afforded the 3,3-disubstituted oxindoles in good to excellent yields. DFT computations supported the notion that the reaction went through the 1-alkyl-2-oxo-2H-indol-1-ium intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.