Background-Several studies have suggested that stem cells are present in the stroma-vascular fraction (SVF) of adipose tissue (AT). Methods and Results-To characterize the cell populations that compose the SVF of human AT originating from subcutaneous and visceral depots, fluorescence-activated cell sorter analysis was performed by use of fluorescent antibodies directed against the endothelial and stem cell markers CD31, CD34, CD133, and ABCG2.
Adipose tissue produces inflammation and immunity molecules suspected to be involved in obesity-related complications. The pattern of expression and the nutritional regulation of these molecules in humans are poorly understood. We analyzed the gene expression profiles of subcutaneous white adipose tissue from 29 obese subjects during very low calorie diet (VLCD) using cDNA microarray and reverse transcription quantitative PCR. The patterns of expression were compared with that of 17 non-obese subjects. We determined whether the regulated genes were expressed in adipocytes or stromavascular fraction cells. Gene expression profiling identified 100 inflammation-related transcripts that are regulated in obese individuals when eating a 28 day VLCD but not a 2 day VLCD. Cluster analysis showed that the pattern of gene expression in obese subjects after 28 day VLCD was closer to the profile of lean subjects than to the pattern of obese subjects before VLCD. Weight loss improves the inflammatory profile of obese subjects through a decrease of proinflammatory factors and an increase of anti-inflammatory molecules. The genes are expressed mostly in the stromavascular fraction of adipose tissue, which is shown to contain numerous macrophages. The beneficial effect of weight loss on obesity-related complications may be associated with the modification of the inflammatory profile in adipose tissue.
Aims/hypothesis: Increased visceral white adipose tissue (WAT) is linked to the risk of developing diabetes. Methods/results: We showed by fluorescence activated cell sorting analysis that human visceral WAT contains macrophages, the proportion of which increased with obesity. Selective isolation of mature adipocytes and macrophages from human visceral WAT by CD14 immunoselection revealed that macrophages expressed higher levels of chemokines (monocyte chemotactic protein 1, macrophage inflammatory protein 1α, IL-8) and the adipokines resistin and visfatin than did mature adipocytes, as assessed by real-time PCR analysis. Moreover, resistin and visfatin proteins were found to be released predominantly by visceral WAT macrophages. Macrophage-derived secretory products stimulated phosphorylation of protein kinase B in human hepatocytes. Conclusions/interpretation: Resistin and visfatin might be considered to be proinflammatory markers. The increased macrophage population in obese human visceral WAT might be responsible for the enhanced production of chemokines as well as resistin and visfatin.
Obesity has been suggested to be a low-grade systemic inflammatory state, therefore we studied the interaction between human adipocytes and monocytes via adipose tissue (AT)-derived capillary endothelium. Cells composing the stroma-vascular fraction (SVF) of human ATs were characterized by fluorescence-activated cell sorter (FACS) analysis and two cell subsets (resident macrophages and endothelial cells [ECs]) were isolated using antibody-coupled microbeads. Media conditioned by mature adipocytes maintained in fibrin gels were applied to AT-derived ECs. Thereafter, the expression of endothelial adhesion molecules was analyzed as well as the adhesion and transmigration of human monocytes. FACS analysis showed that 11% of the SVF is composed of CD14 ؉ /CD31 ؉ cells, characterized as resident macrophages. A positive correlation was found between the BMI and the percentage of resident macrophages, suggesting that fat tissue growth is associated with a recruitment of blood monocytes. Incubation of AT-derived ECs with adipocyte-conditioned medium resulted in the upregulation of EC adhesion molecules and the increased chemotaxis of blood monocytes, an effect mimicked by recombinant human leptin. These results indicate that adipokines, such as leptin, activate ECs, leading to an enhanced diapedesis of blood monocytes, and suggesting that fat mass growth might be linked to inflammatory processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.