Traditional drug development and discovery has not kept pace with threats from emerging and re-emerging diseases such as Ebola virus, MERS-CoV and more recently, SARS-CoV-2. Among other reasons, the exorbitant costs, high attrition rate and extensive periods of time from research to market approval are the primary contributing factors to the lag in recent traditional drug developmental activities. Due to these reasons, drug developers are starting to consider drug repurposing (or repositioning) as a viable alternative to the more traditional drug development process. Drug repurposing aims to find alternative uses of an approved or investigational drug outside of its original indication. The key advantages of this approach are that there is less developmental risk, and it is less time-consuming since the safety and pharmacological profile of the repurposed drug is already established. To that end, various approaches to drug repurposing are employed. Computational approaches make use of machine learning and algorithms to model disease and drug interaction, while experimental approaches involve a more traditional wet-lab experiments. This review would discuss in detail various ongoing drug repurposing strategies and approaches to combat the current COVID-19 pandemic, along with the advantages and the potential challenges.
The mosquito-borne Zika virus is an emerging pathogen from the Flavivirus genus for which there are no approved antivirals or vaccines. Using the clinically validated PDK-53 dengue virus vaccine strain as a backbone, we created a chimeric dengue/Zika virus, VacDZ, as a live attenuated vaccine candidate against Zika virus. VacDZ demonstrates key markers of attenuation: small plaque phenotype, temperature sensitivity, attenuation of neurovirulence in suckling mice, and attenuation of pathogenicity in interferon deficient adult AG129 mice. VacDZ may be administered as a traditional live virus vaccine, or as a DNA-launched vaccine that produces live VacDZ in vivo after delivery. Both vaccine formulations induce a protective immune response against Zika virus in AG129 mice, which includes neutralising antibodies and a strong Th1 response. This study demonstrates that VacDZ is a safe and effective vaccine candidate against Zika virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.