We present F-PKI, an enhancement to the HTTPS public-key infrastructure (or web PKI) that gives trust flexibility to both clients and domain owners, and enables certification authorities (CAs) to enforce stronger security measures. In today's web PKI, all CAs are equally trusted, and security is defined by the weakest link. We address this problem by introducing trust flexibility in two dimensions: with F-PKI, each domain owner can define a domain policy (specifying, for example, which CAs are authorized to issue certificates for their domain name) and each client can set or choose a validation policy based on trust levels. F-PKI thus supports a property that is sorely needed in today's Internet: trust heterogeneity. Different parties can express different trust preferences while still being able to verify all certificates. In contrast, today's web PKI only allows clients to fully distrust suspicious/misbehaving CAs, which is likely to cause collateral damage in the form of legitimate certificates being rejected. Our contribution is to present a system that is backward compatible, provides sensible security properties to both clients and domain owners, ensures the verifiability of all certificates, and prevents downgrade attacks. Furthermore, F-PKI provides a ground for innovation, as it gives CAs an incentive to deploy new security measures to attract more customers, without having these measures undercut by vulnerable CAs.
In a world with increasing simplicity to store, transfer, and analyze large volumes of data, preserving data confidentiality and integrity of Internet traffic by default becomes more and more important. Unfortunately, a large gap exists between low-security opportunistic encryption and trust-on-first-use (TOFU) protocols, and high-security communication, such as TLS using server certificates or DNSSEC. Our goal is to reduce this gap and provide a base layer for authentication and secrecy that is strictly better than TOFU security. We achieve this by integrating the authentication method PILA into the future Internet architecture SCION. This combines PILA’s address-based authentication, which leverages irrefutable cryptographic proof of misbehavior, and the flexibility of SCION’s control-plane PKI and its per-AS independent addressing scheme. In this work, two concrete issues of PILA are addressed: (1) the reliance on the hierarchical RPKI which introduces a single global trust root, i.e., a single point of failure regarding the security of PILA, and (2) the necessity of an out-of-band communication to prevent downgrade attacks, which can incur a latency overhead and might be used as a resource exhaustion attack vector. We describe how PILA in combination with SCION mitigates these issues and analyze the security of the system. Finally, we discuss several interesting use cases including the SSH, TLS, and DNS protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.