Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly represents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The results demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.
Figure 1: Our dataset provides dense annotations for each scan of all sequences from the KITTI Odometry Benchmark [19]. Here, we show multiple scans aggregated using pose information estimated by a SLAM approach. AbstractSemantic scene understanding is important for various applications. In particular, self-driving cars need a finegrained understanding of the surfaces and objects in their vicinity. Light detection and ranging (LiDAR) provides precise geometric information about the environment and is thus a part of the sensor suites of almost all self-driving cars. Despite the relevance of semantic scene understanding for this application, there is a lack of a large dataset for this task which is based on an automotive LiDAR.In this paper, we introduce a large dataset to propel research on laser-based semantic segmentation. We annotated all sequences of the KITTI Vision Odometry Benchmark and provide dense point-wise annotations for the complete 360 o field-of-view of the employed automotive LiDAR. We propose three benchmark tasks based on this dataset: (i) semantic segmentation of point clouds using a single scan, (ii) semantic segmentation using multiple past scans, and (iii) semantic scene completion, which requires to anticipate the semantic scene in the future. We provide baseline experiments and show that there is a need for more sophisticated models to efficiently tackle these tasks. Our dataset opens the door for the development of more advanced methods, but also provides plentiful data to investigate new research directions. * indicates equal contribution
Abstract-Recently, Rao-Blackwellized particle filters have been introduced as an effective means to solve the simultaneous localization and mapping problem. This approach uses a particle filter in which each particle carries an individual map of the environment. Accordingly, a key question is how to reduce the number of particles. In this paper, we present adaptive techniques for reducing this number in a Rao-Blackwellized particle filter for learning grid maps. We propose an approach to compute an accurate proposal distribution taking into account not only the movement of the robot but also the most recent observation. This drastically decreases the uncertainty about the robot's pose in the prediction step of the filter. Furthermore, we present an approach to selectively carry out resampling operations which seriously reduces the problem of particle depletion. Experimental results carried out with real mobile robots in large-scale indoor as well as in outdoor environments illustrate the advantages of our methods over previous approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.