Electrochemical conversion of carbon dioxide (CO(2)) to carbon monoxide (CO) is a potentially useful step in the desirable transformation of the greenhouse gas to fuels and commodity chemicals. We have found that modification of iron tetraphenylporphyrin through the introduction of phenolic groups in all ortho and ortho' positions of the phenyl groups considerably speeds up catalysis of this reaction by the electrogenerated iron(0) complex. The catalyst, which uses one of the most earth-abundant metals, manifests a CO faradaic yield above 90% through 50 million turnovers over 4 hours of electrolysis at low overpotential (0.465 volt), with no observed degradation. The basis for the enhanced activity appears to be the high local concentration of protons associated with the phenolic hydroxyl substituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.