CD46 downregulation by measles virus (MV) occurs after expression of virus haemagglutinin (H) protein on the surface of the infected cell and is a consequence of CD46-H interaction on the cell membrane. To assess whether CD46 downregulation also occurs after CD46-H interaction when these two molecules are expressed on distinct cells, we used human T cell line Jurkat (expressing CD46) and transfected murine fibroblast line L stably expressing MV-H protein (L.H). FACS analysis shows that cell-to-cell contact of 1 h at 37 °C triggers a reduction of CD46 cell surface labelling as detected by MCI20.6, GB24 and J4-48 monoclonal antibodies. This reduction is similar to that observed The H-mediated CD46 downregulation is reversible and restricted to CD46 since expression of other surface markers (CD3, CD14, CD47 and CD63) is unaffected. It is apparently not mediated in a protein kinase (PK) A-or PKC-dependent manner. Altogether, our results provide an unequivocal demonstration that interaction between the extracellular domains of CD46 and MV-H is sufficient to trigger CD46 downregulation.
This study analyzes the role of the measles virus (MV) receptor, i.e. the human CD46 molecule, in the MHC class II-restricted presentation of MV hemagglutinin (H). We generated transgenic mice ubiquitously expressing CD46, with a similar level of transgene expression on the surface of antigen-presenting cells (APC), i.e. B cells, dendritic cells (DC) and macrophages. APC isolated from transgenic mice and nontransgenic controls were tested for their ability to present MV H to H-specific CD4 + I-E d -restricted T cell hybridomas. All three populations of APC were capable of presenting MV to T cell hybridomas, DC being the most efficient. Expression of CD46 on B lymphocytes increased MHC class II-dependent presentation of MV H up to 100-fold, while CD46-transgenic DC stimulated H-specific T cell hybridomas up to 10-fold better than nontransgenic DC. Interestingly, expression of CD46 did not change the presentation efficiency of transgenic macrophages, indicating that CD46-dependent enhancement of antigen presentation depends on the nature of the APC. Furthermore, a single injection of UV-inactivated MV particles into CD46-transgenic mice, but not nontransgenic controls, induced generation of MV-specific T lymphocytes and production of anti-H antibodies, suggesting a role for CD46 in the efficient capture of MV in vivo. These results show for the first time that one ubiquitously expressed cell surface receptor, like CD46, could function in receptor-mediated antigen presentation both in vitro and in vivo and its performance depends on the type of APC which expresses it.
The aim of this study was to understand the metabolism kinetics of Vero cells grown on microcarriers in bioreactors in serum-free medium (SFM). We sought to determine what nutrients are essential for Vero cells and how they are consumed. Contrary to glucose and to most of the amino acids, glutamine and serine were very quickly depleted in this medium and can be supposed to be responsible for cell apoptosis. Lactate and ammonium ions did not reach toxic levels for Vero cells. We payed more attention to the lactate metabolism. Usually we observed that after about 2 days lactate was consumed in serum-containing media, but its concentration plateaud in SFM. Moreover, the addition of serum in SFM provoked lactate consumption and the rate of glucose and glutamine consumption was twice as high as in the SFM not supplemented with serum. The depletion of glutamine and serine and the metabolic deviations leading to a shortage of intermediate products required for other metabolic pathways probably contribute to the lower cell yield and higher cell death rate in SFM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.