The ESS Design: Accelerator 6The ESS Design: Target 66The ESS Design: Controls 93The ESS Design: Conventional Facilities 109Physica ScriptaPhys. Scr. 93 (2018) 014001 (121pp) https://doi.org/10. 1088/1402-4896/aa9bff This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercialNoDerivs 3.0 licence. Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercialNoDerivs 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Neutron scattering is a well-developed and extensively used means to get access to fundamental properties of biological matter as well as of physical materials. Until the end of the twentieth century that was mainly practiced with-and limited in performance by-the continuous flux of neutrons from ageing nuclear reactors (e.g. the Institut Laue-Langevin (ILL), the flagship of neutron research in Europe and in the world) [1]). Looking forward to the following two decades, an OECD report published in 1998 diagnosed the foreseeable decrease of the number of operational facilities [2] and the need to progress in performance. Considering the high scientific interest and the increasing importance of the subject for society at large, the report concluded by strongly recommending the construction of next generation neutron sources in America, Europe and Asia. Pulsed spallation neutron sources (SNS) using a proton beam power exceeding 1 MW were specifically mentioned as the most interesting high performance facilities in the future landscape of neutron laboratories.The USA was the first country to follow this advice by building the SNS in the Oak Ridge National Laboratory (ORNL) which started in 2006 [3, 4]. Japan followed in 2009 with the Japan Proton Accelerator Research Centre (J-PARC) in Tokai [5,6]. In Europe, the subject was part of a concerted effort to further develop the European world-leading largescale research infrastructures suite. In 2003, the European Strategy Forum for Research Infrastructures (ESFRI), set up by the Research Ministries of the Member States and associated countries, concluded that a 5 MW long-pulse, single target station layout with nominally 22 'public' instruments was the optimum technical reference design for an European Spallation Source (ESS) that would meet the needs of the European science community in the second quarter of the century [7].Six years later, in 2009, it materialised in a real project with the adoption of the site of Lund (Sweden). A preconstruction phase followed until the end of 2013 during which the design was finalised [8]. Construction then started with the first neutron beams planned to be available in 2019, and the ESS facility to be operational at full performance in 2025.2 Description 2.1 Principle and specifics. The high level parameters of ESS are shown in table 1. As at SNS and J-PARC, neutrons at ESS are produced by spallation, when the 2 GeV protons hit the meta...
Third generation synchrotron light sources are characterized by a low emittance and a low emittance coupling. Some light sources are already operating with extremely low coupling close to 0.1%. Measurement of the transverse beam size is generally used to measure the emittance and the coupling. To this end, several systems are currently used and an x-ray pinhole camera is one of them. In this paper we derive the point spread function of the x-ray pinhole camera both analytically and numerically using the Fresnel diffraction integral and taking into account the broadband spectrum of the bending magnet source, and we show that an optimized design allows the measurement of extremely small vertical beam sizes below 5 m. The point spread function of several scintillator screens is also measured, and it shows that the contribution of the diffraction and the screen point spread functions have to be taken into account for an accurate measurement of a low coupling. Finally, we show measurements of the vertical beam sizes as small as 6 m for our nonoptimized setup.
Sixty years of environmental modifications have led to strong and rapid effects on the abundance of vector populations.
In this paper we present the experience at Diamond Light Source in the design, implementation, and operation of low momentum compaction factor lattices for the generation of short x-ray pulses and coherent THz radiation. The effects of higher-order terms in the expansion of the momentum compaction factor on beam dynamics are reviewed from a theoretical point of view, and the details of both high-and low-emittance solutions at Diamond are discussed. Measurements taken to characterize the lattices under a variety of machine conditions are presented, along with the practical limitations that exist as the momentum compaction factor is made to approach zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.