Background: Since the 1990s, the epidemiology of bacterial meningitis worldwide has changed thanks to vaccination. In Tunisia, the main causative pathogens were Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae serotype b (Hib). Only Hib vaccination was available during our study period. Objectives: We performed a laboratory case report based-study of suspected bacterial meningitis in Northern Tunisia from January 2014 to June 2017. Methods: CSF samples obtained from children beyond neonatal age with suspicion of meningitis were tested by two real time PCRs, targeting pneumococcus, meningococcus and Hib, and conventional methods. Results: Using real-time PCR, 63 were positive including ten supplementary cases compared to conventional methods. A general decrease of bacterial meningitis cases was demonstrated comparing to previous data. Pneumococcus was predominant (69.84%) followed by meningococcus (28.57%) and Hib (1.59%). The main serotypes were 14, 19F, 6B and 23F for pneumococcus and serogroup B for meningococcus. Most cases occurred during cold season and children under one year were the most affect- ed by bacterial meningitis. Conclusion: Our study suggests the predominance of pneumococcal cases. It may provide valuable data on meningitis epidemiology before the introduction of pneumococcal vaccine, which may be useful for future evaluation. Keywords: Bacterial meningitis; children; Tunisia; PCR.
Introduction: Bacterial meningitis is a medical emergency requiring a fast and reliable diagnosis. Molecular methods such as real-time PCR (rt-PCR) offer an attractive alternative. Thus, this study aims to establish multiplex rt-PCRs detecting N. meningitidis, S. pneumoniae and H. influenzae b from cerebrospinal fluid in Tunisian children beyond neonatal age. Methodology: Using bioinformatic tools and experimentation, we validated the specificity and optimal criteria of PCRs for primers and probes of plyA (S. pneumoniae), ctrA and sodC (N. meningitidis) and bexA genes (H. influenzae b). We performed one multiplex RT-PCR for detection of S. pneumoniae and N. meningitidis targeting plyA and ctrA, sodC genes respectively, simultaneously with a singleplex RT-PCR for H. influenzae b. The sensitivity and specificity of our methods were assessed. Then, we tested our methods for 122 CSF samples collected from suspected meningitis cases between 2014 and 2016 in Bechir Hamza Children’s Hospital of Tunis. Results: Our results have shown the sensitivity of the designed PCRs was up to 10-4 DNA dilution and the specificity was 100%. PCR evaluation has shown 51 positive samples: 38 of pneumococcal cases, 12 meningococcal cases, 1 case of H. influenzae b with 8.57% and 50% of supplementary positive cases rates respectively. Conclusions: Our assay proved to be very sensitive, specific and rapid for bacterial meningitis diagnosis. In the recent context of Hib vaccination, the possibility of detecting S. pneumoniae and N. meningitidis separately constitute an attractive opportunity. Nevertheless, simultaneous detection of Hib remains relevant in specific clinical context and for epidemiologic study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.