To determine the incidence and 28-d mortality rate for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) using the 1994 American-European Consensus Conference definitions, we prospectively screened every admission to all 21 adult intensive care units in the States of South Australia, Western Australia, and Tasmania (total population older than 15 yr of age estimated as 2,941,137), between October 1 and November 30, 1999. A total of 1,977 admissions were screened of which 168 developed ALI and 148 developed ARDS, which represents a first incidence of 34 and 28 cases per 100,000 per annum, respectively. The respective 28-d mortality rates were 32% and 34%. The most common predisposing factors for ALI were nonpulmonary sepsis (31%) and pneumonia (28%). Although the incidences of ALI and ARDS are higher and the mortality rates are lower than those reported from studies in other countries, multicenter international studies are required to exclude methodological differences as the cause for this finding.
Ventilatory modes employing different inspiratory flow patterns and inspiratory to expiratory ratios may alter lung strain in acute lung injury patients. To determine whether variations in lung strain existed between pressure-controlled, volume-controlled, and pressure-controlled inverse ratio modes of ventilation, we randomly applied each for 30 minutes in 18 acute lung injury patients, keeping tidal volume, respiratory rate, fractional inspired oxygen, and total positive end-expiratory pressure constant. After each mode, a multiple linear regression analysis of dynamic airway pressure and airflow was performed with a volume-dependent single compartment model of the equation of motion, and an index of nonlinear elastic behavior was calculated. In five additional patients, concurrent dynamic computerized axial tomography scanning at juxtadiaphragmatic and subcarinal levels was added. Although static mechanics, oxygenation, and hemodynamics were no different between pressure-controlled, volume-controlled, and pressure-controlled inverse ratio ventilation, we found significant differences in nonlinear behavior. This was least with pressure-controlled followed by volume-controlled ventilation, and pressure-controlled inverse ratio ventilation had the greatest nonlinear elastic behavior. Dynamic computerized axial tomography analysis revealed more overinflated units in the left subcarinal slice with pressure-controlled inverse ratio ventilation. Ventilator flow pattern and inspiratory to expiratory ratio independently influence lung strain in acute lung injury; however, further studies are needed to determine the biologic significance.
Systemic air embolism is a potentially lethal often unrecognised complication of severe chest trauma. We present a case of delayed diagnosis of cerebral air embolism in a patient with severe thoracic trauma. The initiation of positive pressure ventilation, systemic hypotension, intraparenchymal chest drains and aerial transfer to an intensive care unit were all factors contributing to the development of systemic air embolism. The common clinical features, diagnostic tests and management of systemic air emboli are discussed.
Time dependence of predictors of survival in ALI/ARDS exists and must be appropriately modelled. The Cox model with time-varying covariates remains a flexible model in survival analysis of patients with acute severe illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.