With its roots in kinetic theory and the cellular automaton concept, the lattice-Boltzmann (LB) equation can be used to obtain continuum flow quantities from simple and local update rules based on particle interactions. The simplicity of formulation and its versatility explain the rapid expansion of the LB method to applications in complex and multiscale flows. We review many significant developments over the past decade with specific examples. Some of the most active developments include the entropic LB method and the application of the LB method to turbulent flow, multiphase flow, and deformable particle and fiber suspensions. Hybrid methods based on the combination of the Eulerian lattice with a Lagrangian grid system for the simulation of moving deformable boundaries show promise for more efficient applications to a broader class of problems. We also discuss higher-order boundary conditions and the simulation of microchannel flow with finite Knudsen number. Additionally, the remarkable scalability of the LB method for parallel processing is shown with examples. Teraflop simulations with the LB method are routine, and there is no doubt that this method will be one of the first candidates for petaflop computational fluid dynamics in the near future.
An efficient and robust computational method, based on the lattice-Boltzmann method, is presented for analysis of impermeable solid particle(s) suspended in fluid with inertia. In contrast to previous lattice-Boltzmann approaches, the present method can be used for any solid-to-fluid density ratio. The details of the numerical technique and implementation of the boundary conditions are presented. The accuracy and robustness of the method is demonstrated by simulating the flow over a circular cylinder in a two-dimensional channel, a circular cylinder in simple shear flow, sedimentation of a circular cylinder in a two-dimensional channel, and sedimentation of a sphere in a three-dimensional channel. With a solid-to-fluid density ratio close to one, new results from two-dimensional and three-dimensional computational analysis of dynamics of an ellipse and an ellipsoid in a simple shear flow, as well as two-dimensional and three-dimensional results for sedimenting ellipses and prolate spheroids, are presented.
The effect of inertia on the dynamics of a solid particle (a circular cylinder, an elliptical cylinder, and an ellipsoid) suspended in shear flow is studied by solving the discrete Boltzmann equation. At small Reynolds number, when inertia is negligible, the behaviour of the particle is in good agreement with the creeping flow solution showing periodic orbits. For an elliptical cylinder or an ellipsoid, the results show that by increasing the Reynolds number, the period of rotation increases, and eventually becomes infinitely large at a critical Reynolds number, Rec. At Reynolds numbers above Rec, the particle becomes stationary in a steady-state flow. It is found that the transition from a time-periodic to a steady state is through a saddle-node bifurcation, and, consequently, the period of oscillation near this transition is proportional to [mid ]p−pc[mid ]−1/2, where p is any parameter in the flow, such as the Reynolds number or the density ratio, which leads to this transition at p = pc. This universal scaling law is presented along with the physics of the transition and the effect of the inertia and the solid-to-fluid density ratio on the dynamics. It is conjectured that this transition and the scaling law are independent of the particle shape (excluding body of revolution) or the shear profile.
A novel method is developed to simulate suspensions of deformable particles by coupling the lattice-Boltzmann method (LBM) for the fluid phase to a linear finiteelement analysis (FEA) describing particle deformation. The methodology addresses the need for an efficient method to simulate large numbers of three-dimensional and deformable particles at high volume fraction in order to capture suspension rheology, microstructure, and self-diffusion in a variety of applications. The robustness and accuracy of the LBM-FEA method is demonstrated by simulating an inflating thinwalled sphere, a deformable spherical capsule in shear flow, a settling sphere in a confined channel, two approaching spheres, spheres in shear flow, and red blood cell deformation in flow chambers. Additionally, simulations of suspensions of hundreds of biconcave red blood cells at 40 % volume fraction produce continuum-scale physics and accurately predict suspension viscosity and the shear-thinning behaviour of blood. Simulations of fluid-filled spherical capsules which have red-blood-cell membrane properties also display deformation-induced shear-thinning behaviour at 40 % volume fraction, although the suspension viscosity is significantly lower than blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.