associated infections (HAIs) account for a large proportion of the harms caused by health care and are associated with high costs. Better evaluation of the costs of these infections could help providers and payers to justify investing in prevention. OBJECTIVE To estimate costs associated with the most significant and targetable HAIs. DATA SOURCES For estimation of attributable costs, we conducted a systematic review of the literature using PubMed for the years 1986 through April 2013. For HAI incidence estimates, we used the National Healthcare Safety Network of the Centers for Disease Control and Prevention (CDC). STUDY SELECTION Studies performed outside the United States were excluded. Inclusion criteria included a robust method of comparison using a matched control group or an appropriate regression strategy, generalizable populations typical of inpatient wards and critical care units, methodologic consistency with CDC definitions, and soundness of handling economic outcomes. DATA EXTRACTION AND SYNTHESIS Three review cycles were completed, with the final iteration carried out from July 2011 to April 2013. Selected publications underwent a secondary review by the research team. MAIN OUTCOMES AND MEASURES Costs, inflated to 2012 US dollars. RESULTS Using Monte Carlo simulation, we generated point estimates and 95% CIs for attributable costs and length of hospital stay. On a per-case basis, central line-associated bloodstream infections were found to be the most costly HAIs at $45
Background: Personal health records (PHRs) offer the potential to improve the patient experience and the quality of patient care. However, the "digital divide," the population-level gap in Internet and computer access, may prevent certain groups from accessing the PHR.Methods: We conducted a cross-sectional analysis of a PHR within a northeastern health system. We compared adopters (ie, those activating a PHR account online) with nonadopters (ie, those who see a physician offering the PHR but do not activate an account). We further categorized adopters by intensity of PHR use, measured by number of log-ins and number of messages sent to physicians' practices.Results: As of September 30, 2009, among 75 056 patients, 43% had adopted the PHR since 2002. Blacks and Hispanics were less likely to adopt the PHR compared with whites (odds ratio [OR], 0.50; 95% confidence interval [CI], 0.45-0.55; and 0.64; 0.57-0.73, respectively), and those with lower annual income were less likely to adopt the PHR than were those with higher income. Compared with nonadopters, adopters were more likely to have more than 2 comorbidities (OR, 1.27; 95% CI, 1.17-1.30). Use of an aggressive marketing strategy for PHR enrollment increased adoption nearly 3-fold (OR, 2.92; 95% CI, 1.58-5.40). Intensity of use was best predicted by increasing number of comorbidities, followed by race/ethnicity (whites more than blacks and Hispanics) and insurance status. We found no association between income and log-in frequency or secure messages sent.Conclusions: Despite increasing Internet availability, racial/ethnic minority patients adopted a PHR less frequently than white patients, and patients with the lowest annual income adopted a PHR less often than those with higher incomes. Among adopters, however, income did not have an effect on PHR use.
BackgroundPersonal health records (PHRs) have emerged as an important tool with which patients can electronically communicate with their doctors and doctor’s offices. However, there is a lack of theoretical and empirical research on how patients perceive the PHR and the differences in perceptions between users and non-users of the PHR.ObjectiveTo apply a theoretical model, the diffusion of innovation model, to the study of PHRs and conduct an exploratory empirical study on the applicability of the model to the study of perceptions of PHRs. A secondary objective was to assess whether perceptions of PHRs predict the perceived value of the PHR for communicating with the doctor’s office.MethodsWe first developed a survey capturing perceptions of PHR use and other factors such as sociodemographic characteristics, access and use of technology, perceived innovativeness in the domain of information technology, and perceptions of privacy and security. We then conducted a cross-sectional survey (N = 1500). Patients were grouped into five groups of 300: PHR users (innovators, other users, and laggards), rejecters, and non-adopters. We applied univariate statistical analysis (Pearson chi-square and one-way ANOVA) to assess differences among groups and used multivariate statistical techniques (factor analysis and multiple regression analysis) to assess the presence of factors identified by the diffusion of innovation model and the predictors of our dependent variable (value of PHR for communicating with the doctor’s office).ResultsOf the 1500 surveys, 760 surveys were returned for an overall response rate of 51%. Computer use among non-adopters (75%) was lower than that among PHR users (99%) and rejecters (92%) (P < .001). Non-adopters also reported a lower score on personal innovativeness in information technology (mean = 2.8) compared to 3.6 and 3.1, respectively, for users and rejecters (P < .001). Four factors identified by the diffusion of innovation model emerged in the factor analysis: ease of use, relative advantage, observability, and trialability. PHR users perceived greater ease of use and relative advantage of the PHR than rejecters and non-adopters (P<.001). Multiple regression analysis showed the following factors as significant positive predictors of the value of PHR for communicating with the doctor’s office: relative advantage, ease of use, trialability, perceptions of privacy and security, age, and computer use.ConclusionOur study found that the diffusion of innovation model fits the study of perceptions of the PHR and provides a suitable theoretical and empirical framework to identify the factors that distinguish PHR users from non-users. The ease of use and relative advantage offered by the PHR emerged as the most important domains among perceptions of PHR use and in predicting the value of the PHR. Efforts to improve uptake and use of PHRs should focus on strategies that enhance the ease of use of PHRs and that highlight the relative advantages of PHRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.