The innate immune system has been implicated in several neurodegenerative diseases, including human immunodeficiency virus (HIV)-1 associated dementia. Here we show that genetic ablation of CCR5 prevents microglial activation and neuronal damage in a transgenic model of HIV-associated brain injury induced by a CXCR4-utilizing viral envelope gp120. The CCR5 knockout (KO) also rescues spatial learning and memory in gp120-transgenic (tg) mice. However, the CCR5KO does not abrogate astrocytosis, indicating it can occur independently from neuronal injury and behavioral impairment. To further characterize the neuroprotective effect of CCR5-deficiency we performed a genome –wide gene expression analysis of brains from HIVgp120tg mice expressing or lacking CCR5 and non-transgenic controls. Comparison with a human brain microarray study reveals that brains of HIVgp120tg mice and HIV patients with neurocognitive impairment share numerous differentially regulated genes. Furthermore, brains of CCR5 wild-type (WT) and CCR5KO gp120tg mice express markers of an innate immune response. One of the most significantly up-regulated factors is the acute phase protein lipocalin-2 (LCN2). Using cerebrocortical cell cultures, we find that LCN2 is neurotoxic in a CCR5-dependent fashion while inhibition of CCR5 alone is not sufficient to abrogate neurotoxicity of a CXCR4-utilizing gp120. However, the combination of pharmacological CCR5 blockade and LCN2 protects neurons from toxicity of a CXCR4-utilizing gp120 thus recapitulating the finding in CCR5-deficient gp120tg mouse brain. Altogether, our study provides evidence for an indirect pathological role of CCR5 and a novel protective effect of LCN2 in combination with inhibition of CCR5 in HIV-associated brain injury.
Methamphetamine (METH) abuse is frequent in individuals infected with human immunodeficiency virus type-1 (HIV-1) and is suspected to aggravate HIV-associated neurocognitive disorders (HAND). METH is a psychostimulant that compromises several neurotransmitter systems and HIV proteins trigger neuronal injury but the combined effects of viral infection and METH abuse are incompletely understood. In this study we treated transgenic mice expressing the HIV envelope protein gp120 in the brain (HIV/gp120tg) at 3–4 months of age with an escalating-dose, multiple-binge METH regimen. The long-term effects were analyzed after 6–7 months of drug abstinence employing behavioral tests and analysis of neuropathology, electrophysiology and gene expression. Behavioral testing showed that both HIV/gp120tg and WT animals treated with METH displayed impaired learning and memory. Neuropathological analysis revealed that METH similar to HIV/gp120 caused a significant loss of neuronal dendrites and pre-synaptic terminals in hippocampus and cerebral cortex of WT animals. Electrophysiological studies in hippocampal slices showed that METH exposed HIV/gp120tg animals displayed reduced post-tetanic potentiation, whereas both gp120 expression and METH lead to reduced long-term potentiation. A quantitative reverse transcription-polymerase chain reaction array showed that gp120 expression, METH and their combination each caused a significant dysregulation of specific components of GABAergic and glutamatergic neurotransmission systems, providing a possible mechanism for synaptic dysfunction and behavioral impairment. In conclusion, both HIV-1/gp120 and METH caused lasting behavioral impairment in association with neuropathology and altered gene expression. However, combined METH exposure and HIV-1/gp120 expression resulted in the most pronounced, long lasting pre-and post-synaptic alterations coinciding with impaired learning and memory.
b HIV-1 infection frequently causes HIV-associated neurocognitive disorders (HAND) despite combination antiretroviral therapy (cART).Evidence is accumulating that components of cART can themselves be neurotoxic upon long-term exposure. In addition, abuse of psychostimulants, such as methamphetamine, seems to aggravate HAND and compromise antiretroviral therapy. However, the combined effect of virus and recreational and therapeutic drugs on the brain is poorly understood. Therefore, we exposed mixed neuronal-glial cerebrocortical cells to antiretrovirals (ARVs) (zidovudine [AZT], nevirapine [NVP], saquinavir [SQV], and 118-D-24) of four different pharmacological categories and to methamphetamine and, in some experiments, the HIV-1 gp120 protein for 24 h and 7 days. Subsequently, we assessed neuronal injury by fluorescence microscopy, using specific markers for neuronal dendrites and presynaptic terminals. We also analyzed the disturbance of neuronal ATP levels and assessed the involvement of autophagy by using immunofluorescence and Western blotting. ARVs caused alterations of neurites and presynaptic terminals primarily during the 7-day incubation and depending on the specific compounds and their combinations with and without methamphetamine. Similarly, the loss of neuronal ATP was context specific for each of the drugs or combinations thereof, with and without methamphetamine or viral gp120. Loss of ATP was associated with activation of AMP-activated protein kinase (AMPK) and autophagy, which, however, failed to restore normal levels of neuronal ATP. In contrast, boosting autophagy with rapamycin prevented the long-term drop of ATP during exposure to cART in combination with methamphetamine or gp120. Our findings indicate that the overall positive effect of cART on HIV infection is accompanied by detectable neurotoxicity, which in turn may be aggravated by methamphetamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.