Graphene plasmons have attracted significant attention due to their tunability, potentially long propagation lengths and ultracompact wavelengths. However, the latter characteristic imposes challenges to light-plasmon coupling in practical applications, generally requiring sophisticated coupling setups, extremely high doping levels and/or graphene nanostructuting close to the resolution limit of current lithography techniques. Here, we propose and theoretically demonstrate a method for alleviating such a technological strain through the use of a practical substrate whose low and negative dielectric function naturally enlarges the graphene polariton wavelength to more manageable levels. We consider silicon carbide (SiC), as it exhibits a dielectric function whose real part is between -1 and 0, while its imaginary part remains lower than 0.05, in the 951 to 970 cm −1 mid-infrared spectral range. Our calculations show hybridization with the substrate's phonon polariton, resulting in a polariton wavelenth that is an order of magnitude longer than obtained with a silicon dioxide substrate, while the propagation length increases by the same amount.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.