Abstract. We find that foreshocks provide clear evidence for an extended nucleation process before some earthquakes. In this study, we examine in detail the evolution of six California foreshock sequences, the 1986 Mount Lewis (ML = 5.5), the 1986 Chalfant (ML = 6.4), the 1986 Stone Canyon (ML = 4.7), the 1990 Upland (ML = 5.2), the 1992 Joshua Tree (Mw= 6.1), and the 1992 Landers (Mw = 7.3) sequence. Typically, uncertainties in hypocentral parameters are too large to establish the geometry of foreshock sequences and hence to understand their evolution. However, the similarity of location and focal mechanisms for the events in these sequences leads to similar foreshock waveforms that we cross correlate to obtain extremely accurate relative locations. We use these results to identify small-scale fault zone structures that could influence nucleation and to determine the stress evolution leading up to the mainshock. In general, these foreshock sequences are not compatible with a cascading failure nucleation model in which the foreshocks all occur on a single fault plane and trigger the mainshock by static stress transfer. Instead, the foreshocks seem to concentrate near structural discontinuities in the fault and may themselves be a product of an aseismic nucleation process. Fault zone heterogeneity may also be important in controlling the number of foreshocks, i.e., the stronger the heterogeneity, the greater the number of foreshocks. The size of the nucleation region, as measured by the extent of the foreshock sequence, appears to scale with mainshock moment in the same manner as determined independently by measurements of the seismic nucleation phase. We also find evidence for slip localization as predicted by some models of earthquake nucleation.
Abstract. The June 28, 1992, Landers, California, earthquake (Mw=7.3) was preceded for about 7 hours by a foreshock sequence consisting of at least 28 events. In this study we examine the geometry and temporal development of the foreshocks using high-precision locations based on cross correlation of waveforms recorded at nearby stations. By aligning waveforms, rather than trying to obtain travel time picks for each event independently, we are able to improve the timing accuracy greatly and to make very accurate travel time picks even for emergent arrivals. We perform a joint relocation using the improved travel times and reduce the relative location errors to less than 100 rn horizontally and less than 200 rn vertically. With the improved locations the geometry of the foreshock sequence becomes clear. The Landers foreshocks occurred at a fight step of about 500 rn in the mainshock fault plane. The nucleation zone as defined by the foreshock sequence is southeast trending to the south and nearly north trending to the north of the right step. This geometry is confirmed by the focal mechanisms of the foreshock sequence, which are fightlateral and follow the trend as determined by the foreshock locations on the two straight segments of the fault, and are rotated clockwise for foreshocks that occur within the step. The extent of the foreshock sequence is approximately 1 km both vertically and horizontally. Modeling of the Coulomb stress changes due to all previous foreshocks indicates that the foreshocks probably did not trigger each other. This result is particularly clear for the Mw=4.4 immediate foreshock. Since stress transfer in the sequence appears not to have played a significant role in its development, we infer an underlying aseismic nucleation process, probably aseismic creep. Other studies have shown that earthquake nucleation may be controlled by fault zone irregularities. This appears to be true in the case of the Landers earthquake, although the size of the irregularity is so small that it is not detectable by standard location techniques.
The finding that the Earth's inner core might be rotating faster than the mantle has important implications for our understanding of core processes, including the generation of the Earth's magnetic field. But the reported signal is subtle--a change of about 0.01 s per year in the separation of two seismic waves with differing paths through the core. Subsequent studies of such data have generally supported the conclusion that differential rotation exists, but the difficulty of accurately locating historic earthquakes and possible biases induced by strong lateral variations in structure near the core-mantle boundary have raised doubt regarding the proposed inner-core motion. Also, a study of free oscillations constrained the motion to be relatively small compared to previous estimates and it has been proposed that the interaction of inner-core boundary topography and mantle heterogeneity might lock the inner core to the mantle. The recent detection of seismic waves scattered in the inner core suggests a simple test of inner-core motion. Here we compare scattered waves recorded in Montana, USA, from two closely located nuclear tests at Novaya Zemlya, USSR, in 1971 and 1974. The data show small but coherent changes in scattering which point toward an inner-core differential rotation rate of 0.15 degrees per year--consistent with constraints imposed by the free-oscillation data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.