Composite ceramics based on the spinel Mg2TiO4 were prepared by a conventional mixed‐oxide route. To achieve the temperature stabilization of the dielectric constant, each of the composites was added with 7 mol% CaTiO3. The effect of the substitution of isovalent Co for Mg on the microstructure and the microwave dielectric properties of the composite ceramics was also investigated. A maximum Q×f value of around 150–160 THz was obtained for the undoped Mg2TiO4, whereas a reduced Q×f value was observed for an increase in the Co concentration in the system (1−x)Mg2TiO4−xCo2TiO4. Upon doping with 7 mol% CaTiO3, the Q×f value passed through a maximum with increasing Co concentration. Adding ZnO–B2O3 to the composite system based on Co‐doped Mg2TiO4 resulted in a reduction of the sintering temperature by 150°–200°C without any significant degradation in the Q×f value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.