¦ van der Waals gap Septuple layer J § J || T 1/2 J 0,1 || J 0,2 || J 0,3 || J 0,4 ||
Feasibility of many emergent phenomena that intrinsic magnetic topological insulators (TIs) may host depends crucially on our ability to engineer and efficiently tune their electronic and magnetic structures. Here we report on a large family of intrinsic magnetic TIs in the homologous series of the van der Waals compounds (MnBi2Te4)(Bi2Te3)m with m = 0, ⋯, 6. Magnetic, electronic and, consequently, topological properties of these materials depend strongly on the m value and are thus highly tunable. The antiferromagnetic (AFM) coupling between the neighboring Mn layers strongly weakens on moving from MnBi2Te4 (m = 0) to MnBi4Te7 (m = 1) and MnBi6Te10 (m = 2). Further increase in m leads to change of the overall magnetic behavior to ferromagnetic (FM) one for (m = 3), while the interlayer coupling almost disappears. In this way, the AFM and FM TI states are, respectively, realized in the m = 0, 1, 2 and m = 3 cases. For large m numbers a hitherto-unknown topologically nontrivial phase can be created, in which below the corresponding critical temperature the magnetizations of the non-interacting 2D ferromagnets, formed by the MnBi2Te4 building blocks, are disordered along the third direction. The variety of intrinsic magnetic TI phases in (MnBi2Te4)(Bi2Te3)m allows efficient engineering of functional van der Waals heterostructures for topological quantum computation, as well as antiferromagnetic and 2D spintronics.
We study the surface crystalline and electronic structures of the antiferromagnetic topological insulator MnBi2Te4 using scanning tunneling microscopy/spectroscopy (STM/S), micro(μ)-laser angle-resolved photoemission spectroscopy (ARPES), and density functional theory calculations. Our STM images reveal native point defects at the surface that we identify as BiTe antisites and MnBi substitutions. Bulk X-ray diffraction further evidences the presence of the Mn-Bi intermixing. Overall, our characterizations suggest that the defects concentration is nonuniform within crystals and differs from sample to sample. Consistently, the ARPES and STS experiments reveal that the Dirac point gap of the topological surface state is different for different samples and sample cleavages, respectively. Our calculations show that the antiparallel alignment of the MnBi moments with respect to those of the Mn layer can indeed cause a strong reduction of the Dirac point gap size. The present study provides important insights into a highly debated issue of the MnBi2Te4 Dirac point gap.
In this work, we employed angle resolved photoemission spectroscopy (ARPES) to analyze the temperature dependent changes in the electronic structure of the first antiferromagnetic topological insulator MnBi2Te4 upon crossing the Néel temperature TN ≈ 25 K. We observed an exchange splitting of the bulk conduction band, which has a power law dependence on temperature (1−T/T0)2β with an onset temperature T0 well matching the measured bulk TN. We found a matching temperature evolution of the topological surface states integrated spectral weight in the vicinity of the Dirac point. Furthermore, we observed an additional quasi-2D state with Rashba-type splitting, which is also affected by the emerged magnetism and exhibits an opening of a gap, reminiscent of the effect of an out-of-plane magnetic field, below TN. All these findings point toward strong evidence of the interplay between emerged magnetism with bulk and topological surface states. The observed temperature-dependent effects in MnBi2Te4 may be used as an experimental fingerprint for the presence of magnetism and may guide the future analysis of ARPES spectra in magnetic topological insulators.
Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures (9–35 K), light polarizations and photon energies. We have distinguished both large (60–70 meV) and reduced ( ) gaps at the DP in the ARPES dispersions, which remain open above the Neél temperature ( ). We propose that the gap above remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the “large gap” sample and apparently significantly reduced effective magnetic moment for the “reduced gap” sample. These observations can be explained by a shift of the Dirac cone (DC) state localization towards the second Mn layer due to structural disturbance and surface relaxation effects, where DC state is influenced by compensated opposite magnetic moments. As we have shown by means of ab-initio calculations surface structural modification can result in a significant modulation of the DP gap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.