A total of four Martian samples, one surface and one subsurface sample at each of the two Viking landing sites, Chryse Planitia and Utopia Planitia, have been analyzed for organic compounds by a gas chromatograph‐mass spectrometer. In none of these experiments could organic material of Martian origin be detected at detection limits generally of the order of parts per billion and for a few substances closer to parts per million. The evolution of water and carbon dioxide, but not of other inorganic gases, was observed upon heating the sample to temperatures of up to 500°C. The absence of organic compounds seems to preclude their production on the planet at rates that exceed the rate of their destruction. It also makes it unlikely that living systems that behave in a manner similar to terrestrial biota exist, at least at the two Viking landing sites.
Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500 degrees C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts in 10(9) by weight in our samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.
The synthesis of purines and pyrimidines using Oparin-Urey-type primitive Earth atmospheres has been demonstrated by reacting methane, ethane, and ammonia in electrical discharges. Adenine, guanine, 4-aminoimidazole-5-carboxamide (AICA), and isocytosine have been identified by UV spectrometry and paper chromatography as the products of the reaction. The total yields of the identified heterocyclic compounds are 0.0023%. It is concluded that adenine synthesis occurs at a much lower concentration of hydrogen cyanide than has been shown by earlier studies. Pathways for the synthesis of purines from hydrogen cyanide are discussed, and a comparison of the heterocyclic compounds that have been identified in meteorites and in prebiotic reactions is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.