Abstract. In today's climate of clinical governance there is growing pressure on surgeons to demonstrate their competence, improve standards and reduce surgical errors. This paper presents a study on developing a novel eye-gaze driven technique for surgical assessment and workflow recovery. The proposed technique investigates the use of a Parallel Layer Perceptor (PLP) to automate the recognition of a key surgical step in a porcine laparoscopic cholecystectomy model. The classifier is eye-gaze contingent but combined with image based visual feature detection for improved system performance. Experimental results show that by fusing image instrument likelihood measures, an overall classification accuracy of 75% is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.