Flavodoxins are electron-transfer proteins that contain the prosthetic group flavin mononucleotide. In Escherichia coli, flavodoxin is reduced by the FAD-containing protein NADPH:ferredoxin (flavodoxin) oxidoreductase; flavodoxins serve as electron donors in the reductive activation of anaerobic ribonucleotide reductase, biotin synthase, pyruvate formate lyase, and cobalamin-dependent methionine synthase. In addition, domains homologous to flavodoxin are components of the multidomain flavoproteins cytochrome P450 reductase, nitric oxide synthase, and methionine synthase reductase. Although three-dimensional structures are known for many of these proteins and domains, very little is known about the structural aspects of their interactions. We address this issue by using NMR chemical shift mapping to identify the surfaces on flavodoxin that bind flavodoxin reductase and methionine synthase. We find that these physiological partners bind to unique overlapping sites on flavodoxin, precluding the formation of ternary complexes. We infer that the flavodoxin-like domains of the cytochrome P450 reductase family form mutually exclusive complexes with their electron-donating and -accepting partners, complexes that require conformational changes for interconversion.
Cobalamin-dependent methionine synthase catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine, forming tetrahydrofolate and methionine. The Escherichia coli enzyme, like its mammalian homologue, is occasionally inactivated by oxidation of the cofactor to cob(II)alamin. To return to the catalytic cycle, the cob(II)alamin forms of both the bacterial and mammalian enzymes must be reductively remethylated. Reduced flavodoxin donates an electron for this reaction in E. coli, and S-adenosylmethionine serves as the methyl donor. In humans, the electron is thought to be provided by methionine synthase reductase, a protein containing a domain with a significant degree of homology to flavodoxin. Because of this homology, studies of the interactions between E. coli flavodoxin and methionine synthase provide a model for the mammalian system. To characterize the binding interface between E. coli flavodoxin and methionine synthase, we have employed site-directed mutagenesis and chemical cross-linking using carbodiimide and N-hydroxysuccinimide. Glutamate 61 of flavodoxin is identified as a cross-linked residue, and lysine 959 of the C-terminal activation domain of methionine synthase is assigned as its partner. The mutation of lysine 959 to threonine results in a diminished level of cross-linking, but has only a small effect on the affinity of methionine synthase for flavodoxin. Identification of these cross-linked residues provides evidence in support of a docking model that will be useful in predicting the effects of mutations observed in mammalian homologues of E. coli flavodoxin and methionine synthase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.