Feedback from massive stars is believed to be a key element in the evolution of molecular clouds. We use high‐resolution 3D smoothed particle hydrodynamics simulations to explore the dynamical effects of a single O7 star‐emitting ionizing photons at 1049 s−1 and located at the centre of a molecular cloud with mass 104 M⊙ and radius 6.4 pc; we also perform comparison simulations in which the ionizing star is removed. The initial internal structure of the cloud is characterized by its fractal dimension, which we vary between D=2.0 and 2.8, and the standard deviation of the approximately log‐normal initial density PDF, which is σ10 = 0.38 for all clouds. (i) As regards star formation, in the short term ionizing feedback is positive, in the sense that star formation occurs much more quickly (than in the comparison simulations), in gas that is compressed by the high pressure of the ionized gas. However, in the long term ionizing feedback is negative, in the sense that most of the cloud is dispersed with an outflow rate of up to ∼10−2 M⊙yr−1, on a time‐scale comparable with the sound‐crossing time for the ionized gas (∼1−2 Myr ), and triggered star formation is therefore limited to a few per cent of the cloud's mass. We will describe in greater detail the statistics of the triggered star formation in a companion paper. (ii) As regards the morphology of the ionization fronts (IFs) bounding the H ii region and the systematics of outflowing gas, we distinguish two regimes. For low D≲2.2, the initial cloud is dominated by large‐scale structures, so the neutral gas tends to be swept up into a few extended coherent shells, and the ionized gas blows out through a few large holes between these shells; we term these H ii regions shell dominated. Conversely, for high D≳2.6, the initial cloud is dominated by small‐scale structures, and these are quickly overrun by the advancing IF, thereby producing neutral pillars protruding into the H ii region, whilst the ionized gas blows out through a large number of small holes between the pillars; we term these H ii regions pillar dominated. (iii) As regards the injection of bulk kinetic energy, by ∼1 Myr, the expansion of the H ii region has delivered a mass‐weighted rms velocity of ∼6 km s−1; this represents less than 0.1 per cent of the total energy radiated by the O7 star.
We suggest that low‐mass hydrogen‐burning stars like the Sun should sometimes form with massive extended discs, and we show, by means of radiation hydrodynamic simulations, that the outer parts of such discs (R≳ 100 au) are likely to fragment on a dynamical time‐scale (103 to 104 yr), forming low‐mass companions: principally brown dwarfs (BDs), but also very low‐mass hydrogen‐burning stars and planetary‐mass objects. A few of the BDs formed in this way remain attached to the primary star, orbiting at large radii. The majority are released into the field by interactions amongst themselves; in so doing they acquire only a low velocity dispersion (≲2 km s−1), and therefore they usually retain small discs, capable of registering an infrared excess and sustaining accretion. Some BDs form close BD/BD binaries, and these binaries can survive ejection into the field. This BD formation mechanism appears to avoid some of the problems associated with the ‘embryo ejection’ scenario, and to answer some of the questions not yet answered by the ‘turbulent fragmentation’ scenario.
We present simulations of stable isothermal clouds exposed to ionizing radiation from a discrete external source, and identify the conditions that lead to Radiatively Driven Implosion and Star Formation. We use the Smoothed Particle Hydrodynamics code SEREN (Hubber et al. 2010) and the HEALPix-based photoionization algorithm described in Bisbas et al. (2009). We find that the incident ionizing flux is the critical parameter determining the evolution; high fluxes disperse the cloud, whereas low fluxes trigger star formation. We find a clear connection between the intensity of the incident flux and the parameters of star formation.
A star acquires much of its mass by accreting material from a disc. Accretion is probably not continuous but episodic. We have developed a method to include the effects of episodic accretion in simulations of star formation. Episodic accretion results in bursts of radiative feedback, during which a protostar is very luminous, and its surrounding disc is heated and stabilised. These bursts typically last only a few hundred years. In contrast, the lulls between bursts may last a few thousand years; during these lulls the luminosity of the protostar is very low, and its disc cools and fragments. Thus, episodic accretion enables the formation of low-mass stars, brown dwarfs and planetary-mass objects by disc fragmentation. If episodic accretion is a common phenomenon among young protostars, then the frequency and duration of accretion bursts may be critical in determining the low-mass end of the stellar initial mass function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.