Transgenic mice carrying rat androgen-binding protein (ABP) genomic DNA express high amounts of testicular ABP and develop a progressive impairment of spermatogenesis. To understand the mechanism of these changes, we have studied the pattern of testicular germ cell proliferation from 7 to 360 days of age in wild-type (WT) control and transgenic homozygous (ABP-TG) mice by flow cytometry after labeling DNA in isolated germ cells with propidium iodide. At all ages studied, the body weight of the ABP-TG mice was lower than that of age-matched WT controls. Significantly reduced testicular weight and total germ cell number in the ABP-TG mice were evident from Day 30 and Day 60, respectively. Flow cytometric analysis of isolated germ cells revealed that the number of germ cells undergoing proliferation (S-phase cells) was identical in WT control and ABP-TG mice up to Day 14. Subsequently, the number of germ cells in S-phase was consistently higher in ABP-TG than in WT mice. The number of primary spermatocytes was significantly increased starting from Day 60, and the numbers of round and elongated spermatids were significantly reduced in the ABP-TG animals from Day 21 and Day 60 onwards, respectively. Immunocytometry for intracellular ABP at 90 days of age revealed that the percentage of ABP-containing germ cells was greater in ABP-TG than in WT mice. The continuous presence of ABP in mouse seminiferous tubules at greater than physiological concentrations facilitates the formation of primary spermatocytes but impairs subsequent transformation to round and elongated spermatids. Based on our observations and the analysis of the available literature, the most likely mechanism for production of these effects is sustained reduction in the bioavailability of androgens.
Donor leukocyte infusions (DLI) in the allogeneic hematopoietic transplant setting can provide a clinically relevant boost of immunity to reduce opportunistic infections and to increase graft-versus-leukemia activity. Despite significant advances in applicability, DLI has not been available for single-unit recipients of unrelated cord blood transplant. Ex vivo expansion of cord blood T cells can be achieved with interleukin (IL)-2 and CD3/CD28 costimulatory beads. However, significant apoptosis occurs in proliferating T cells, diminishing the yield and skewing the CD4/CD8 ratio in the T-cell population, jeopardizing the potential efficacy of DLI. In this study, we show that interleukin (IL)-7 not only reduces apoptosis of activated T lymphocytes and enhances their proliferation but also promotes functional maturation, leading to secretion of IFN-γ and other key cytokines. Recognizing that infused T lymphocytes will need to meet microbial antigens in secondary lymphoid organs to generate effectors, we also show that expansion with IL-7 promotes the preservation of a polyclonal broad T-cell receptor repertoire and a surface phenotype that favors lymph node homing. Expanded lymphocytes lack alloreactivity against recipient and other allogeneic cells, indicating a favorable safety profile from graft-versus-host disease. Nevertheless, expanded T cells can be primed subsequently against lymphoid and myeloid leukemia cells to generate tumor-specific cytotoxic T cells. Taken together, our findings offer a major step in fulfilling critical numerical and biological requirements to quickly generate a DLI product ex vivo using a negligible fraction of a cord blood graft that provides a flexible adoptive immunotherapy platform for both children and adults. Cancer Res; 70(13); 5249-58. ©2010 AACR.
The number and type of testicular germ cells undergoing apoptosis in different age groups of mice (from 7 to 360 days of age) was determined and compared in age-matched wild type (WT) control and in a transgenic (TG) mice homozygous to rat androgen binding protein (ABP) using flow cytometry. Flow cytometric quantification revealed that the total number of germ cells undergoing apoptosis did not differ significantly in WT and TG mice up to Day 14. From Day 21 to Day 60, the number of germ cells undergoing apoptosis was consistently higher in TG than in WT mice. Starting from Day 90, the number of germ cells undergoing apoptosis in TG mice was lower than controls until Day 360. In 21–60 days old TG mice, spermatogonia, S-Phase cells, and primary spermatocytes are the cell types undergoing apoptosis at significantly greater numbers than those in WT mice. However, starting from day 60, the total number of spermatids undergoing apoptosis was significantly lower in TG mice than in age-matched WT controls. TdT-mediated dUTP-biotin nick end labeling (TUNEL) in testicular sections from TG mice of 21 and 30 days of age confirmed the presence of increased numbers of apoptotic germ cells compared to their age matched controls.These data indicate that the continuous presence of greater than physiological concentrations of ABP in the mouse testis has a biphasic effect on the frequency of apoptosis in germ cells. The initial pre-pubertal increase in testicular germ cell apoptosis may result from direct or indirect actions of ABP and is likely to determine the subsequent life-death balance of germ cell populations in TG mice, whereas the subsequent reduction may result from maturation depletion. A wave of apoptosis during the pre-pubertal period is required for normal spermatogenesis to develop, and our data indicate that this apoptotic wave may be regulated by ABP and/or androgens.
The stimulatory and inhibitory effects on testicular steroidogenesis of transient neonatal hypothyroidism from day 1 postpartum through different postnatal developmental events on testis at puberal age (60 days old) were studied in vivo. Hypothyroidism was induced in neonates by feeding the lactating mother or directly with 0.05% methimazole (MMI) through drinking water from the day of parturition to 10, 15, 30, 40 and 60 days, and were killed at day 60 postpartum. Plasma and testicular interstitial fluid (TIF) progesterone, testosterone, dihydrotestosterone (DHT) and estradiol concentrations were assessed. Testis weight and volume significantly increased in rats subjected to 10 and 15 days of hypothyroidism, decreased in rats subjected to 30, 40 and 60 days of hypothyroidism. A consistent increase in Leydig cell number was seen in puberal rats subjected to transient neonatal hypothyroidism but decreased in 60 days hypothyroid rats. Peritubular myoid cell number was consistently decreased in all experimental rats. Leydig cell diameter decreased consistently in all experimental groups. Persistent hypothyroidism (60 days hypothyroid) consistently decreased both plasma and TIF sex steroids. In transient hypothyroid rats, progesterone concentration decreased in both plasma and TIF. Transient hypothyroidism from birth to day 10 postnatal age maintained normal titre of plasma testosterone, whereas a significant increase in TIF testosterone concentration was evident when compared with controls. All other groups of rats subjected to transient neonatal hypothyroidism had consistently low titres of plasma and TIF testosterone. Plasma DHT concentrations in rats subjected to transient neonatal hypothyroidism remained unaltered. However, TIF DHT increased in 10 days
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.