Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround responses of bipolar cells have been recorded on many occasions, surprisingly, the underlying surround-induced responses in cones are not easily detected. In this paper, the nature of the surround-induced responses in cones is studied. Horizontal cells feed back to cones by shifting the activation function of the calcium current in cones to more negative potentials. This shift increases the calcium influx, which increases the neurotransmitter release of the cone. In this paper, we will show that under certain conditions, in addition to this increase of neurotransmitter release, a calcium-dependent chloride current will be activated, which polarizes the cone membrane potential. The question is, whether the modulation of the calcium current or the polarization of the cone membrane potential is the major determinant for feedback-mediated responses in second-order neurons. Depolarizing light responses of biphasic horizontal cells are generated by feedback from monophasic horizontal cells to cones. It was found that niflumic acid blocks the feedback-induced depolarizing responses in cones, while the shift of the calcium current activation function and the depolarizing biphasic horizontal cell responses remain intact. This shows that horizontal cells can feed back to cones, without inducing major changes in the cone membrane potential. This makes the feedback synapse from horizontal cells to cones a unique synapse. Polarization of the presynaptic (horizontal) cell leads to calcium influx in the postsynaptic cell (cone), but due to the combined activity of the calcium current and the calcium-dependent chloride current, the membrane potential of the postsynaptic cell will be hardly modulated, whereas the output of the postsynaptic cell will be strongly modulated. Since no polarization of the postsynaptic cell is needed for these feedback-mediated responses, this mechanism of synaptic transmission can modulate the neurotransmitter release in single synaptic terminals without affecting the membrane potential of the entire cell.
Color vision is spectrally opponent, suggesting that spectrally opponent neurons, such as the horizontal cells in fish and turtle retinae, play a prominent role in color discrimination. In the accompanying paper (Kraaij et al., 1998), it was shown that the output signal of the horizontal cell system to the cones is not at all spectrally opponent. Therefore, a role for the spectrally opponent horizontal cells in color discrimination seems unlikely. In this paper, we propose that the horizontal cells play a prominent role in color constancy and simultaneous color contrast instead of in color discrimination. We have formulated a model of the cone/horizontal cell network based on measurements of the action spectra of the cones and of the feedback signal of the horizontal cell system to the various cone types. The key feature of the model is (1) that feedback is spectrally and spatially very broad and (2) that the gain of the cone synapse strongly depends on the feedback strength. This makes the synaptic gain of the cones strongly dependent on the spectral composition of the surround. Our model, which incorporates many physiological details of the outer retina, displays a behavior that can be interpreted as color constancy and simultaneous color contrast. We propose that the horizontal cell network modulates the cone synaptic gains such that the ratios of the cone outputs become almost invariant with the spectral composition of the global illumination. Therefore, color constancy appears to be coded in the retina.
The spectral sensitivity of cones in isolated goldfish retina was determined with whole-cell recording techniques. Three spectral classes of cones were found with maximal sensitivities around 620 nm, 540 nm, and 460 nm. UV-cones were not found because our stimulator did not allow effective stimulation in the UV range. The spectral sensitivity of the cones closely matched the cone photopigment absorption spectra at the long wavelength side of the spectrum, but deviated significantly at shorter wavelengths. Surround stimulation induced an inward current in cones due to feedback from horizontal cells. The spectral sensitivity of this feedback signal was determined in all three cone classes and found to be broader than the spectral sensitivity of the cones recorded from, and to be spectrally nonopponent. These data are consistent with a connectivity scheme between cones and horizontal cells in which the three horizontal cell systems feed back to all cone systems and in which all horizontal cell systems receive input from more than one cone system.
The dynamic properties of the microcircuitry formed by cones and horizontal cells in the isolated goldfish retina were studied. Cones project to horizontal cells and horizontal cells feed back to cones via a relatively slow negative feedback pathway. The time constant of the feedback signal in cones and of the effect this feedback signal had on the responses of second‐order neurons was determined using whole‐cell patch clamp and intracellular recording techniques. It was found that the feedback signal in cones had a time constant of around 80 ms, whereas the time constant of the effect this feedback signal had on the second‐order neurons ranged from 36 to 116 ms. This range of time constants can be accounted for by the non‐linearity of the Ca2+ current in the cones. In depolarized cones, the feedback‐mediated response in second‐order neurons had a similar time constant to that of the direct light response of the cone, whereas in hyperpolarized cones, the time constant of the feedback‐mediated response in second‐order neurons was considerably larger. Further, it was shown that there was no delay in the feedback pathway. This is in contrast to what has been deduced from the response properties of second‐order neurons. In one type of horizontal cell, the responses to red light were delayed relative to the responses to green light. This delay in the second‐order neurons can be accounted for by the interaction of the direct light response of the medium‐wavelength‐sensitive cones (M‐cones) with the feedback response of the M‐cones received from the horizontal cells.
Under constant light-adapted conditions, vision seems to be rather linear. However, the processes underlying the synaptic transmission between cones and second-order neurons (bipolar cells and horizontal cells) are highly nonlinear. In this paper, the gain-characteristics of the transmission from cones to horizontal cells and from horizontal cells to cones are determined with and without negative feedback from horizontal cells to cones. It is shown that 1) the gain-characteristic from cones to horizontal cells is strongly nonlinear without feedback from horizontal cells, 2) the gain-characteristic between cones and horizontal cells becomes linear when feedback is active, and 3) horizontal cells feed back to cones via a linear mechanism. In a quantitative analysis, it will be shown that negative feedback linearizes the synaptic transmission between cones and horizontal cells. The physiological consequences are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.