Breast cancer is the most common type of cancer among women in the world. Mammography is regarded as an effective tool for early detection and diagnosis of breast cancer. Microcalcification is one of the primary signs of breast cancer. There are various image texture analysis techniques for the detection of the microcalcifications. Screenfilm mammography is still the standard method used to detect early breast cancer, thus leading to early treatment. Digital mammography has recently been designated as the imaging technology with the greatest potential for improving the diagnosis of breast cancer. In this work a feature-based approach is used for analysis and classification of malignancy. Gray-level texture and Wavelet coefficient texture methods are used for feature extraction. Probabilistic Neural Network (PNN) is used for classification of images based on extracted features. The performance of classification by PNN based on features by texture method, wavelet method and combined methods are compared. The Receiver Operating Characteristics (ROC) Analysis is used for performance evaluation.
Breast cancer is one of the major causes of death among women. Early detection of breast cancer is possible by the detection of clustered microcalcifications on X-ray mammograms. Texture is an important characteristic used in identifying objects or region of interest in a digitised mammogram. This work focuses on a statistical texture analysis method called Surrounding Region Dependence Method (Kim and Park, 1999) - based on second order histogram in two surrounding regions. Six textural features are extracted and are used to classify region of interests into positive ROIs, containing clustered microcalcifications and negative ROIs composed of normal breast tissues. A 3-layer backpropagation neural network is used as a classifier. Results are evaluated using Receiver Operating Characteristics analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.