Abstract. 1. Although pollen is a vital nutritional resource for honey bees, Apis mellifera, the influence of pollen quality on their foraging behaviour is little understood. 2. In choice‐test experiments, bees showed no innate pollen‐foraging preferences, but preferred oilseed rape Brassica napus pollen over field bean Vicia faba pollen after previous foraging experience of oilseed rape. 3. The free amino acid content of oilseed rape and field bean pollen was compared using high‐performance liquid chromatography. Oilseed rape pollen contained a greater proportion of the most essential amino acids required by honey bees (valine, leucine, and isoleucine) than field bean, suggesting that oilseed rape pollen is of greater nutritional quality for honey bees than is field bean pollen. 4. Honey bee foraging preferences appeared to reflect pollen quality. The hypothesis that pollen amino acid composition affects the foraging behaviour of honey bees is discussed.
New control strategies for insect pests of arable agriculture are needed to reduce current dependence on synthetic insecticides, the use of which is unsustainable. We investigated the potential of a simple control strategy to protect spring‐sown oilseed rape, Brassica napus L. (Brassicaceae), from two major inflorescence pests: the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), and the seed weevil, Ceutorhynchus assimilis (Paykull) (Coleoptera: Curculionidae), through exploitation of their host plant preferences. The strategy comprised, for the main crop, Starlight [an oilseed rape cultivar with relatively low proportions of alkenyl glucosinolates in the leaves (thereby releasing lower levels of attractive isothiocyanates than conventional cultivars)] and turnip rape, Brassica rapa (L.) (Brassicaceae), as a trap crop. We tested the system in laboratory, polytunnel semifield arena, and field experiments. The odours of Starlight were less attractive in olfactometer tests to both pests than those from a conventional cultivar, Canyon, and the plants were less heavily colonized in both polytunnel and field experiments. Turnip rape showed good potential as a trap crop for oilseed rape pests, particularly the pollen beetle as its odour was more attractive to both pests than that of oilseed rape. Polytunnel and field experiments showed the importance of relative growth stage in the system. As turnip rape flowers earlier than oilseed rape, beetles would be maintained on turnip rape past the damage‐susceptible growth stage of oilseed rape. The development of a pest control regime based on this strategy is discussed.
Behavioural and chemical ecology underlying the success of turnip rape (Brassica rapa) trap crops in protecting oilseed rape (Brassica napus) from the pollen beetle (Meligethes aeneus) Abstract There is increasing interest in the use of trap crops as components of integrated pest management (IPM) strategies. Understanding the mechanisms underlying host plant preferences of herbivorous pests can lead to improved effectiveness and reliability of the trap crop. We investigated the behavioural and chemical ecology underlying the success of turnip rape, Brassica rapa, trap crops in protecting oilseed rape, Brassica napus, from the pollen beetle, Meligethes aeneus, which feeds in the flowers and lays its eggs in the buds causing yield loss. Using a semi-field arena bioassay, plant growth stage was found to be a major factor in the preference of this pest for B. rapa over B. napus. Plants at early-flowering growth stages were preferred over plants in the bud stage, irrespective of species. No preference was found when both species were flowering. As B. rapa develops faster than B. napus in the field, this could explain part of the mechanism of its success as a trap crop. However, B. rapa was preferred over B. napus when both species were in the bud stage, indicating some inherent preferences for B. rapa. Responses of M. aeneus in olfactometer tests to the odours of B. napus and B. rapa at the bud and flowering growth stages, reflected those of the semi-field arena bioassay. These behavioural responses can be explained by volatile compounds associated with the flowering stage. Phenylacetaldehyde, indole and (E,E)-a-farnesene were found to be present in air entrainment samples of both plant species at the flowering growth stage, but only in those of B. rapa at the bud stage. The former two compounds were behaviourally-active in olfactometer tests. These compounds are likely to be involved in host location by M. aeneus, and, at least partially, responsible for the attractiveness of B. rapa and its success as a trap crop to protect B. napus from this pest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.