We used infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer Experiment to globally map thermophysical properties of the Moon's regolith fines layer. Thermal conductivity varies from 7.4 × 10−4 W m−1 K−1 at the surface to 3.4 × 10−3 W m−1 K−1 at depths of ~1 m, given density values of 1,100 kg m−3 at the surface to 1,800 kg m−3 at 1 m depth. On average, the scale height of these profiles is ~7 cm, corresponding to a thermal inertia of 55 ± 2 J m−2 K−1 s−1/2 at 273 K, relevant to the diurnally active near‐surface layer, ~4–7 cm. The temperature dependence of thermal conductivity and heat capacity leads to an ~2 times diurnal variation in thermal inertia at the equator. On global scales, the regolith fines are remarkably uniform, implying rapid homogenization by impact gardening of this layer on timescales <1 Gyr. Regional‐ and local‐scale variations show prominent impact features <1 Gyr old, including higher thermal inertia (> 100 J m−2 K−1 s−1/2) in the interiors and ejecta of Copernican‐aged impact craters and lower thermal inertia (< 50 J m−2 K−1 s−1/2) within the lunar cold spots identified by Bandfield et al. (2014). Observed trends in ejecta thermal inertia provide a potential tool for age dating craters of previously unknown age, complementary to the approach suggested by Ghent et al. (2014). Several anomalous regions are identified in the global 128 pixels per degree maps presented here, including a high‐thermal inertia deposit near the antipode of Tycho crater.
[1] Surface temperatures derived from thermal infrared measurements provide a means of understanding the physical properties of the lunar surface. The contrasting thermophysical properties between rocks and regolith fines cause multiple temperatures to be present within the field of view of nighttime multispectral data returned from the Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer between 60°N/S latitudes. Regolith temperatures are influenced by the presence of rocks in addition to factors such as the thermophysical properties of the regolith fines, latitude and local slopes, and radiative heating from adjacent crater walls. Preliminary comparisons of derived rock concentrations with LRO Camera images show both qualitative and quantitative agreement. Although comparisons of derived rock concentrations with circular polarization ratio radar data sets display general similarities, there are clear differences between the two data sets in the relative magnitude and areal extent of rocky signatures. Several surface units can be distinguished based on their regolith temperature and rock concentration values and distributions including maria and highlands surfaces, rocky impact craters, rilles, and wrinkle ridges, dark mantled deposits, and isolated cold surfaces. Rock concentrations are correlated with crater age and rocks are only preserved on the youngest surfaces or where steep slopes occur and mass wasting prevents mantling with fines. The presence of rocky surfaces excavated by young impacts allows for the estimation of minimum regolith thickness from the size of the impact. The derived rock concentrations confirm the presence of thicker regolith cover in the highlands and in locations of radar-dark haloes.
[1] The Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter has measured solar reflectance and mid-infrared radiance globally, over four diurnal cycles, at unprecedented spatial and temporal resolution. These data are used to infer the radiative and bulk thermophysical properties of the near-surface regolith layer at all longitudes around the equator. Normal albedos are estimated from solar reflectance measurements. Normal spectral emissivities relative to the 8-mm Christiansen Feature are computed from brightness temperatures and used along with albedos as inputs to a numerical thermal model. Model fits to daytime temperatures require that the albedo increase with solar incidence angle. Measured nighttime cooling is remarkably similar across longitude and major geologic units, consistent with the scarcity of rock exposures and with the widespread presence of a near-surface layer whose physical structure and thermal response are determined by pulverization through micrometeoroid impacts. Nighttime temperatures are best fit using a graded regolith model, with a $40% increase in bulk density and an eightfold increase in thermal conductivity (adjusted for temperature) occurring within several centimeters of the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.